Feature selection is critical in omics data analysis to extract restricted and meaningful molecular signatures from complex and high-dimension data, and to build robust classifiers. This package implements a new method to assess the relevance of the variables for the prediction performances of the classifier. The approach can be run in parallel with the PLS-DA, Random Forest, and SVM binary classifiers. The signatures and the corresponding 'restricted' models are returned, enabling future predictions on new datasets. A Galaxy implementation of the package is available within the Workflow4metabolomics.org online infrastructure for computational metabolomics.
Package details |
|
---|---|
Author | Philippe Rinaudo <phd.rinaudo@gmail.com>, Etienne Thevenot <etienne.thevenot@cea.fr> |
Bioconductor views | Classification FeatureExtraction Lipidomics Metabolomics Proteomics Transcriptomics |
Maintainer | Philippe Rinaudo <phd.rinaudo@gmail.com>, Etienne Thevenot <etienne.thevenot@cea.fr> |
License | CeCILL |
Version | 1.18.2 |
Package repository | View on Bioconductor |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.