Description Usage Arguments Value Author(s) References See Also Examples
The entire strategy to get the association between metabolites and microbes, using linear and nonlinear methods, and plot the regression figures.
1 |
A |
A SummarizedExperiment object contains data of metabolome, where rows represent features of metabolites and columns represent samples. |
B |
A SummarizedExperiment object contains data of microbiome, where rows represent features of microbes and columns represent samples. |
C |
A SummarizedExperiment object contains data of covariates, where rows represent features of covariates and columns represent samples. |
metaNor |
Should metabolome data normalized? Using normalization when your metabolites are qualitative; and no normalization when the metabolites are quantitative. Default:TRUE. |
rarefaction |
Resample an OTU table such that all samples have the same library size. Here refers to a repeated sampling procedure to assess species richness, first proposed in 1968 by Howard Sanders.(see wikipedia for more detail.) Default:FALSE. |
r |
The linear regression coefficients threshold for using nonlinear method. Default: 0.5. |
alpha |
The linear regression p-value threshold for using nonlinear method.Default: 0.05. |
pretreatment |
The result of pretreatment |
correlation |
The result of correlation, see naiveGramm for detail |
A file named "R value top 10 pairs.pdf" will be created automatically (corrlation coefficient top 10 pairs) .
Mengci Li, Dandan Liang, Tianlu Chen and Wei Jia
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., Egozcue, J. J., Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017, 8 (2224). Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole. D. Reshef, Y. Reshef, H. Finucane, S. Grossman, G. McVean, P. Turnbaugh, E. Lander, M. Mitzenmacher, P. Sabeti. (2011) Detecting novel associations in large datasets. Science 334, 6062. D. Albanese, M. Filosi, R. Visintainer, S. Riccadonna, G. Jurman, C. Furlanello. minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics (2013) 29(3): 407-408.
preGramm for pretreatment;nlfitGramm for nonlinear fitting;naiveGramm for naive correlation method.
1 2 | data("metabolites");data("microbes");data("covariates")
Gramm(metabolites,microbes,covariates)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.