Description Usage Arguments Value Examples
View source: R/setinitialvalues.R
Generate initial values for parameters
1 2 3 4 | setinitvalues(npred, np, npred_miss, npred_sub, nmiss, nsid,
censor_lim_upp = 0.008, ita_a = 1, ita_b = 1/10, g_mu = 0,
g_sig = 1, alpha_mu_u = 0, alpha_mu_s = 1, alpha_theta_a = 1,
alpha_theta_b = 1/10, beta2_theta_a = 1, beta2_theta_b = 1/10)
|
npred |
number of predictors for the regression model |
np |
number of protein/metabolite units comprised of the response values (i.e. which represents peptides' ion-intensities used to construct protein/metabolite's abundance) |
npred_miss |
number of predictors for missingness |
npred_sub |
number of predictors for the second level units such as subjects |
nmiss |
number of observations with missing responses values |
nsid |
number of second level units i.e. subjects |
censor_lim_upp |
upper-limit of censored value of responses. The default value is 0.001 according to an experiment device. User can change it according to the data. |
ita_a |
shape parameter for gamma distributed prior-ita (std of response value). The default is set to 1. |
ita_b |
rate parameter for gamma distributed prior-ita. The default is set to 1/10. The default values of shape and rate parameters provide a reasonable wide range of initial value for ita. Users can change it accordingly. |
g_mu |
mean of normal distributed location parameter g for re-parameterising U (regression coefficient of model in the completed data). The default value is set to 0 for the mean of standard normal distribution. |
g_sig |
std of normal distributed location parameter g. The default is set to 1 for the std of normal distribution. |
alpha_mu_u |
mean of normal distributed location parameter alpha_mu for re-parameterising alpha (regression coefficient of logistic regression model for missing prob). The default is set to 0. |
alpha_mu_s |
std of normal distributed location parameter alpha_mu |
alpha_theta_a |
shape parameter of gamma-distributed dispersion parameter alpha_theta for re-parameterising alpha. Default value is set to 1 as a natural starting value. |
alpha_theta_b |
rate parameter of gamma-distributed alpha_theta. Default value uses 1/10 as for ita_b. Both default values of shape(_a) and rate(_b) of alpha_theta can be changed to give a wider range (_b=1/10) or a narrower range (_b=0.5). |
beta2_theta_a |
shape parameter of gamma-distributed beta2_theta for re-parameterizing beta2 (regression coefficient for second level units,i.e. subject). Default value uses 1. |
beta2_theta_b |
rate parameter of gamma distributed dispersion parameter beta2_theta. Default value used 1/10, same as for ita_b. |
pVAR precision matrix for predictors in completed data model
U_latent standardized multinormal distributed latern variable to re-parameterise regression coefficient U.
g location parameter to re-parameterise U.
alpha_mu mean value for alpha(regression coefficient of model for missing probability).
alpha_latent standardized normal distributed latent variable to re-parameterize alpha.
beta2_latent standardized multivariate normal distributed latent variable to re-parameterising beta2.
beta2_mu mean of the multivariate normal distributed beta2
y_m_latent standardized normal distributed latent variable to re-parameterise response variable.
1 2 | testexmp <- setinitvalues(npred=2,np=3,npred_miss=3,npred_sub=2,nmiss=10,
nsid=30)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.