Description Usage Arguments Value Author(s) References Examples
View source: R/desponds_functions.R
This function fits a continuous type-I pareto distribution to a vector of count data. Given data x, a threshold Cmin, and letting n be the number of clones greater than u, the shape parameter alpha is computed as
n * 1/(∑ log(x/Cmin)) + 1.
The method considers every possible threshold (that is, every element of the vector unique(x)). The threshold and alpha which minimize the Kolmogorov-Smirnov statistic are selected.
1 | fdesponds(x)
|
x |
vector of counts. |
min.KS |
The value of the KS statistic for the fitted Pareto distribution. |
Cmin |
The inferred threshold. |
powerlaw.exponent |
The powerlaw exponent. This is equal to |
pareto.alpha |
The inferred shape parameter alpha of the fitted Pareto distribution. |
Desponds, Jonathan, Thierry Mora, and Aleksandra M. Walczak. "Fluctuating fitness shapes the clone-size distribution of immune repertoires." Proceedings of the National Academy of Sciences 113.2 (2016): 274-279. APA
1 2 3 4 5 6 7 8 9 | # Fit the model to sample data
data("repertoires")
fit1 <- fdesponds(repertoires[[1]])
fit2 <- fdesponds(repertoires[[2]])
fit1
fit2
|
sh: 1: wc: Permission denied
Could not detect number of cores, defaulting to 1.
min.KS Cmin powerlaw.exponent pareto.alpha
0.04428183 18.00000000 2.75600901 1.75600901
min.KS Cmin powerlaw.exponent pareto.alpha
0.08790801 34.00000000 3.05892821 2.05892821
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.