Description Usage Arguments Details Value Examples
A function for the projection of new data into a previously defined feature space.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85  | projectR(data, loadings, dataNames = NULL, loadingsNames = NULL, ...)
## S4 method for signature 'matrix,matrix'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE,
  family = "gaussianff",
  bootstrapPval = FALSE,
  bootIter = 1000
)
## S4 method for signature 'matrix,LinearEmbeddingMatrix'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE,
  model = NA,
  family = "gaussianff",
  bootstrapPval = FALSE,
  bootIter = 1000
)
## S4 method for signature 'matrix,prcomp'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE
)
## S4 method for signature 'matrix,rotatoR'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE
)
## S4 method for signature 'matrix,correlateR'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE,
  bootstrapPval = FALSE,
  bootIter = 1000
)
## S4 method for signature 'matrix,hclust'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  full = FALSE,
  targetNumPatterns,
  sourceData,
  bootstrapPval = FALSE,
  bootIter = 1000
)
## S4 method for signature 'matrix,kmeans'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  full = FALSE,
  sourceData,
  bootstrapPval = FALSE,
  bootIter = 1000
)
 | 
data | 
 Target dataset into which you will project. It must of type matrix.  | 
loadings | 
 loadings learned from source dataset.  | 
dataNames | 
 a vector containing unique name, i.e. gene names, for the rows of the target dataset to be used to match features with the loadings, if not provided by   | 
loadingsNames | 
 a vector containing unique names, i.e. gene names, for the rows ofloadings to be used to match features with the data, if not provided by   | 
... | 
 Additional arguments to projectR  | 
NP | 
 vector of integers indicating which columns of loadings object to use. The default of NP=NA will use entire matrix.  | 
full | 
 logical indicating whether to return the full model solution. By default only the new pattern object is returned.  | 
family | 
 VGAM family function for model fitting (default: "gaussianff")  | 
bootstrapPval | 
 logical to indicate whether to generate p-values using bootstrap, not available for prcomp and rotatoR objects  | 
bootIter | 
 number of bootstrap iterations, default = 1000  | 
model | 
 Optional arguements to choose method for projection  | 
targetNumPatterns | 
 desired number of patterns with hclust  | 
sourceData | 
 data used to create cluster object  | 
loadings can belong to one of several classes depending on upstream
analysis. Currently permitted classes are matrix, CogapsResult, 
CoGAPS, pclust, prcomp, rotatoR, 
and correlateR.
A matrix of sample weights for each input basis in the loadings matrix (if full=TRUE, full model solution is returned).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  | projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=AP.RNAseq6l3c3t$Amean, 
dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
library("CoGAPS")
CR.RNAseq6l3c3t <- CoGAPS(p.RNAseq6l3c3t, params = new("CogapsParams",
nPatterns=5))
projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=CR.RNAseq6l3c3t,
dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
pca.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))
pca.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq, 
loadings=pca.RNAseq6l3c3t, dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
pca.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))
r.RNAseq6l3c3t<-rotatoR(1,1,-1,-1,pca.RNAseq6l3c3t$rotation[,1:2])
pca.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq, 
loadings=r.RNAseq6l3c3t, dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
c.RNAseq6l3c3t<-correlateR(genes="T", dat=p.RNAseq6l3c3t, threshtype="N", 
threshold=10, absR=TRUE)
cor.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=c.RNAseq6l3c3t, 
NP="PositiveCOR", dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.