computeDevianceResiduals | Deviance residuals of the zero-inflated negative binomial... |
computeObservationalWeights | Observational weights of the zero-inflated negative binomial... |
getAlpha_mu | Returns the matrix of paramters alpha_mu |
getAlpha_pi | Returns the matrix of paramters alpha_pi |
getBeta_mu | Returns the matrix of paramters beta_mu |
getBeta_pi | Returns the matrix of paramters beta_pi |
getEpsilon_alpha | Returns the vector of regularization parameter for alpha |
getEpsilon_beta_mu | Returns the vector of regularization parameter for beta_mu |
getEpsilon_beta_pi | Returns the vector of regularization parameter for beta_pi |
getEpsilon_gamma_mu | Returns the vector of regularization parameter for gamma_mu |
getEpsilon_gamma_pi | Returns the vector of regularization parameter for gamma_pi |
getEpsilon_W | Returns the vector of regularization parameter for W |
getEpsilon_zeta | Returns the regularization parameter for the dispersion... |
getGamma_mu | Returns the matrix of paramters gamma_mu |
getGamma_pi | Returns the matrix of paramters gamma_pi |
getLogitPi | Returns the matrix of logit of probabilities of zero |
getLogMu | Returns the matrix of logarithm of mean parameters |
getMu | Returns the matrix of mean parameters |
getPhi | Returns the vector of dispersion parameters |
getPi | Returns the matrix of probabilities of zero |
getTheta | Returns the vector of inverse dispersion parameters |
getV_mu | Returns the gene-level design matrix for mu |
getV_pi | Returns the gene-level design matrix for pi |
getW | Returns the low-dimensional matrix of inferred sample-level... |
getX_mu | Returns the sample-level design matrix for mu |
getX_pi | Returns the sample-level design matrix for pi |
getZeta | Returns the vector of log of inverse dispersion parameters |
glmWeightedF | Zero-inflation adjusted statistical tests for assessing... |
imputeZeros | Impute the zeros using the estimated parameters from the ZINB... |
independentFiltering | Perform independent filtering in differential expression... |
loglik | Compute the log-likelihood of a model given some data |
nFactors | Generic function that returns the number of latent factors |
nFeatures | Generic function that returns the number of features |
nParams | Generic function that returns the total number of parameters... |
nSamples | Generic function that returns the number of samples |
orthogonalizeTraceNorm | Orthogonalize matrices to minimize trace norm of their... |
penalty | Compute the penalty of a model |
pvalueAdjustment | Perform independent filtering in differential expression... |
solveRidgeRegression | Solve ridge regression or logistic regression problems |
toydata | Toy dataset to check the model |
zinbAIC | Compute the AIC of a model given some data |
zinbBIC | Compute the BIC of a model given some data |
zinbFit | Fit a ZINB regression model |
zinbInitialize | Initialize the parameters of a ZINB regression model |
zinb.loglik | Log-likelihood of the zero-inflated negative binomial model |
zinb.loglik.dispersion | Log-likelihood of the zero-inflated negative binomial model,... |
zinb.loglik.dispersion.gradient | Derivative of the log-likelihood of the zero-inflated... |
zinb.loglik.matrix | Log-likelihood of the zero-inflated negative binomial model... |
zinb.loglik.regression | Penalized log-likelihood of the ZINB regression model |
zinb.loglik.regression.gradient | Gradient of the penalized log-likelihood of the ZINB... |
zinbModel | Initialize an object of class ZinbModel |
ZinbModel-class | Class ZinbModel |
zinbOptimize | Optimize the parameters of a ZINB regression model |
zinbOptimizeDispersion | Optimize the dispersion parameters of a ZINB regression model |
zinb.regression.parseModel | Parse ZINB regression model |
zinbSim | Simulate counts from a zero-inflated negative binomial model |
zinbsurf | Perform dimensionality reduction using a ZINB regression... |
zinbwave | Perform dimensionality reduction using a ZINB regression... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.