EquationCitations | R Documentation |
Analysis of citations of evolutionary biology papers published in 1998 in the top three journals (as judged by their 5-year impact factors in the Thomson Reuters Journal Citation Reports 2010).
data("EquationCitations")
A data frame containing 649 observations on 13 variables.
Factor. Journal in which the paper was published (The American Naturalist, Evolution, Proceedings of the Royal Society of London B: Biological Sciences).
Character. Names of authors.
Volume in which the paper was published.
Starting page of publication.
Number of pages.
Number of equations in total.
Number of equations in main text.
Number of equations in appendix.
Number of citations in total.
Number of citations by the authors themselves.
Number of citations by other authors.
Number of citations by theoretical papers.
Number of citations by nontheoretical papers.
Fawcett and Higginson (2012) investigate the relationship between the number of citations evolutionary biology papers receive, depending on the number of equations per page in the cited paper. Overall it can be shown that papers with many mathematical equations significantly lower the number of citations they receive, in particular from nontheoretical papers.
Online supplements to Fawcett and Higginson (2012).
https://www.pnas.org/doi/suppl/10.1073/pnas.1205259109/suppl_file/sd01.xlsx
Fawcett, T.W. and Higginson, A.D. (2012). Heavy Use of Equations Impedes Communication among Biologists. PNAS – Proceedings of the National Academy of Sciences of the United States of America, 109, 11735–11739. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1073/pnas.1205259109")}
PhDPublications
## load data and MASS package
data("EquationCitations", package = "AER")
library("MASS")
## convenience function for summarizing NB models
nbtable <- function(obj, digits = 3) round(cbind(
"OR" = exp(coef(obj)),
"CI" = exp(confint.default(obj)),
"Wald z" = coeftest(obj)[,3],
"p" = coeftest(obj)[, 4]), digits = digits)
#################
## Replication ##
#################
## Table 1
m1a <- glm.nb(othercites ~ I(equations/pages) * pages + journal,
data = EquationCitations)
m1b <- update(m1a, nontheocites ~ .)
m1c <- update(m1a, theocites ~ .)
nbtable(m1a)
nbtable(m1b)
nbtable(m1c)
## Table 2
m2a <- glm.nb(
othercites ~ (I(mainequations/pages) + I(appequations/pages)) * pages + journal,
data = EquationCitations)
m2b <- update(m2a, nontheocites ~ .)
m2c <- update(m2a, theocites ~ .)
nbtable(m2a)
nbtable(m2b)
nbtable(m2c)
###############
## Extension ##
###############
## nonlinear page effect: use log(pages) instead of pages+interaction
m3a <- glm.nb(othercites ~ I(equations/pages) + log(pages) + journal,
data = EquationCitations)
m3b <- update(m3a, nontheocites ~ .)
m3c <- update(m3a, theocites ~ .)
## nested models: allow different equation effects over journals
m4a <- glm.nb(othercites ~ journal / I(equations/pages) + log(pages),
data = EquationCitations)
m4b <- update(m4a, nontheocites ~ .)
m4c <- update(m4a, theocites ~ .)
## nested model best (wrt AIC) for all responses
AIC(m1a, m2a, m3a, m4a)
nbtable(m4a)
AIC(m1b, m2b, m3b, m4b)
nbtable(m4b)
AIC(m1c, m2c, m3c, m4c)
nbtable(m4c)
## equation effect by journal/response
## comb nontheo theo
## AmNat =/- - +
## Evolution =/+ = +
## ProcB - - =/+
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.