| boxcoxmeta | R Documentation | 
boxcoxmeta performs ensemble based Box-Cox transformation via meta analysis for normality of a variable and provides graphical analysis.  
boxcoxmeta(data, lambda = seq(-3,3,0.01), nboot = 100, lambda2 = NULL, plot = TRUE, 
  alpha = 0.05, verbose = TRUE)
data | 
 a numeric vector of data values.  | 
lambda | 
 a vector which includes the sequence of candidate lambda values. Default is set to (-3,3) with increment 0.01.  | 
nboot | 
 a number of Bootstrap samples to estimate standard errors of lambda estimates.  | 
lambda2 | 
 a numeric for an additional shifting parameter. Default is set to lambda2 = 0.  | 
plot | 
 a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE.  | 
alpha | 
 the level of significance to check the normality after transformation. Default is set to alpha = 0.05.  | 
verbose | 
 a logical for printing output to R console.  | 
Denote y the variable at the original scale and y' the transformed variable. The Box-Cox power transformation is defined by:
y' = \left\{ \begin{array}{ll}
    \frac{y^\lambda - 1}{\lambda} \mbox{ ,  if $\lambda \neq 0$} \cr
    log(y) \mbox{ , if $\lambda = 0$} 
    \end{array} \right.
If the data include any nonpositive observations, a shifting parameter \lambda_2 can be included in the transformation given by: 
y' = \left\{ \begin{array}{ll}
    \frac{(y + \lambda_2)^\lambda - 1}{\lambda} \mbox{ ,  if $\lambda \neq 0$} \cr
    log(y + \lambda_2) \mbox{ , if $\lambda = 0$} 
    \end{array} \right.
A list with class "boxcoxmeta" containing the following elements:
method | 
 name of method  | 
lambda.hat | 
 estimate of Box-Cox Power transformation parameter  | 
lambda2 | 
 additional shifting parameter  | 
result | 
 a data frame containing the result  | 
alpha | 
 the level of significance to assess normality.  | 
tf.data | 
 transformed data set  | 
var.name | 
 variable name  | 
Muhammed Ali Yilmaz, Osman Dag
Yilmaz, M.A., Dag, O. (2022). Ensemble Based Box-Cox Transformation via Meta Analysis. Journal of Advanced Research in Natural and Applied Sciences, 8:3, 463–471.
library(AID)
data(textile)
out <- boxcoxmeta(textile[,1])
out$lambda.hat # the estimate of Box-Cox parameter 
out$tf.data # transformed data set
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.