R/data.R

#' RIS file data from Functional Family Therapy (FFT) systematic review
#'
#' Bibliometric toy data from a systematic review regarding
#' Functional Family Therapy (FFT) for Young People in Treatment for
#' Non-opioid Drug Use (Filges et al., 2015). The data includes all 90 included and 180 excluded
#' randomly sampled references from the literature search of the
#' systematic review.
#'
#'
#' @format A \code{tibble} with 270 rows/studies and 6 variables/columns
#'
#' \tabular{lll}{
#'  \bold{author} \tab \code{character} \tab indicating the authors of the reference \cr
#'  \bold{eppi_id} \tab \code{character} \tab indicating a unique eppi-ID for each study \cr
#'  \bold{studyid} \tab \code{numeric} \tab indicating a unique study-ID for each study \cr
#'  \bold{title} \tab \code{character} \tab with the title of the study \cr
#'  \bold{abstract}  \tab \code{character} \tab with the study abstract \cr
#'  \bold{human_code} \tab \code{numeric} \tab indicating the human screening decision.
#'  1 = included, 0 = excluded. \cr
#' }
#'
#'
#' @references Filges, T., Andersen, D, & Jørgensen, A-M. K (2015).
#' Functional Family Therapy (FFT) for Young People in Treatment for Non-opioid Drug Use: A Systematic Review
#' \emph{Campbell Systematic Reviews}, \doi{10.4073/csr.2015.14}
#'

"filges2015_dat"


#' Model prize data (last updated November 5, 2024)
#'
#' Data set containing input and output prizes for all OpenAI's GPT API models.
#'
#' @format A \code{data.frame} containing 15 rows/models and 3 variables/columns
#'
#' \tabular{lll}{
#'  \bold{model} \tab \code{character} \tab indicating the specific GPT model \cr
#'  \bold{price_in_per_token} \tab \code{character} \tab indicating the input prize per token \cr
#'  \bold{price_out_per_token} \tab \code{character} \tab indicating the output prize per token \cr
#' }
#'
#' @references OpenAI. \emph{Pricing}. \url{https://openai.com/api/pricing/}

"model_prizes"

Try the AIscreenR package in your browser

Any scripts or data that you put into this service are public.

AIscreenR documentation built on April 3, 2025, 7:11 p.m.