Nothing
knitr::opts_chunk$set(echo = TRUE)
While ALUES can generate tables for suitability scores and classes, it would be best to visualize it via maps. The main requirement of course is the availability of the longitude and latitude for each of the land units. This is possible for Marinduque as it has spatial variables (longitude and latitude).
Suppose we want to evaluate the land units for banana, then:
library(ALUES) y <- MarinduqueLT banana_suit <- suit("banana", terrain=y) banana_ovsuit <- overall_suit(banana_suit[["soil"]], method="average")
There are several ways to generate maps in R, but the following uses ggmap library:
library(ggmap) library(raster) library(reshape2) map_lvl0 <- getData("GADM", country = "PHL", level = 0) map_lvl2 <- getData("GADM", country = "PHL", level = 2) prov <- map_lvl2[map_lvl2$NAME_1 == as.character("Marinduque"),] munic_coord <- coordinates(prov) munic_coord <- data.frame(munic_coord) munic_coord$label <- prov@data$NAME_2 val <- banana_suit[["soil"]][[2]] val["Overall Suitability"] <- banana_ovsuit[,1] d_map <- melt(as.matrix(val)) d_map$Lon <- rep(y$Lon, ncol(val)); d_map$Lat <- rep(y$Lat, ncol(val)) fill <- "#FFF7BC"; shadow <- "#9ECAE1"; ncol <- 3; size <- 3; alpha <- 1 text_opts <- list(alpha = 1, angle = 0, colour = "black", family = "sans", fontface = 1, lineheight = 1, size = 3) labels <- list(title = "", xlab = "", ylab = "") p1 <- ggplot() + geom_polygon(data = prov, aes(long + 0.008, lat - 0.005, group = group), fill = shadow) + geom_polygon(data = prov, aes(long, lat, group = group), colour = "grey50", fill = fill) + geom_tile(aes(x = Lat, y = Lon, fill = value), data = d_map, size = size, alpha = alpha) + facet_wrap(~ Var2, ncol = ncol) + geom_polygon(data = prov, aes(long, lat, group = group), colour = "#4E4E4C", alpha = 0) + geom_label(data = munic_coord, aes(x = X1, y = X2, label = label), alpha = 0.5, angle = text_opts$angle, colour = "white", fill = "black", family = text_opts$family, fontface = text_opts$fontface, lineheight = text_opts$lineheight, size = text_opts$size) + coord_equal() + ggtitle(as.character(labels$title)) + xlab(as.character(labels$xlab)) + ylab(as.character(labels$ylab)) + scale_fill_gradientn(name = "Score\n", colors = c("red", "#FFDF00")) + scale_x_continuous(breaks = round(seq(min(d_map$Lat) + 0.05, max(d_map$Lat), len = 3), 2)) + theme(panel.background = element_rect(fill = '#F7E7CE'), strip.background = element_rect(fill = "#D4BF96"), strip.text.x = element_text(size = 12), axis.text.x = element_text(size=12), legend.text=element_text(size=12), legend.title=element_text(size=12), axis.text.y = element_text(size=12), legend.position = c(0.85, 0.25)) p1
knitr::include_graphics("../vignettes/img/scores1.jpg")
And for suitability classes:
val <- banana_suit[["soil"]][[3]] val["Overall Suitability"] <- banana_ovsuit[,2] d_map <- melt(as.matrix(val)) d_map$Lon <- rep(y$Lon, ncol(val)); d_map$Lat <- rep(y$Lat, ncol(val)) d_map$Class <- factor(d_map$value, levels=c("N", "S3", "S2", "S1")) p1 <- ggplot() + geom_polygon(data = prov, aes(long + 0.008, lat - 0.005, group = group), fill = shadow) + geom_polygon(data = prov, aes(long, lat, group = group), colour = "grey50", fill = fill) + geom_tile(aes(x = Lat, y = Lon, fill = Class), data = d_map, size = size, alpha = alpha) + facet_wrap(~ Var2, ncol = ncol) + geom_polygon(data = prov, aes(long, lat, group = group), colour = "#4E4E4C", alpha = 0) + geom_label(data = munic_coord, aes(x = X1, y = X2, label = label), alpha = 0.5, angle = text_opts$angle, colour = "white", fill = "black", family = text_opts$family, fontface = text_opts$fontface, lineheight = text_opts$lineheight, size = text_opts$size) + coord_equal() + ggtitle(as.character(labels$title)) + xlab(as.character(labels$xlab)) + ylab(as.character(labels$ylab)) + scale_colour_discrete(name = "Class\n", breaks=c("N", "S3", "S2", "S1"), labels=c("N", "S3", "S2", "S1")) + scale_x_continuous(breaks = round(seq(min(d_map$Lat) + 0.05, max(d_map$Lat), len = 3), 2)) + theme(panel.background = element_rect(fill = '#F7E7CE'), strip.background = element_rect(fill = "#D4BF96"), strip.text.x = element_text(size = 12), axis.text.x = element_text(size=12), legend.text=element_text(size=12), legend.title=element_text(size=12), axis.text.y = element_text(size=12), legend.position = c(0.85, 0.25)) p1
knitr::include_graphics("../vignettes/img/classes1.jpg")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.