stat.glmm | R Documentation |
Performs Generalized Linear Mixed Models tests
stat.glmm(ant, formula, family, oda = NULL, progress = TRUE, ncores = 1, ...)
ant |
an output of ANT function |
formula |
two-sided linear formula object describing both the fixed-effects and random-effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. Random-effects terms are distinguished by vertical bars (|) separating expressions for design matrices from grouping factors. Two vertical bars (||) can be used to specify multiple uncorrelated random effects for the same grouping variable. (Because of the way it is implemented, the ||-syntax works only for design matrices containing numeric (continuous) predictors; to fit models with independent categorical effects, see dummy or the lmer_alt function from the afex package.). |
family |
a GLM family, see |
oda |
the original data frame of associations when argument ant is obtained with perm.ds.grp or perm.ds.focal ANT functions. |
progress |
a boolean indicating the visualization of the permutation process. |
ncores |
an integer indicating the number of jobs to create for parallelization. |
... |
Extra arguments for |
GLMM with permutation data.
Returns a list of 3 elements :
An object of class merMod
(more specifically, an object of subclass lmerMod or glmerMod), for which many methods are available (e.g. methods(class="merMod")).
A data frame if the estimates of the permuted models.
A vector of integers indicating the permutations that returned model errors or warnings (e.g. model convergence issues) and for which new permutations were done.
Sebastian Sosa, Ivan Puga-Gonzalez.
lmer
or glmer
# Creating temporal data-------------------------- m2=matrix(sample(sim.m),20,20) diag(m2)=0 colnames(m2)=colnames(sim.m) row.names(m2)=row.names(sim.m) df2=sim.df df2$age=df2$age+1 df1=sim.df df1$period=rep(1,nrow(df1)) df2$period=rep(2,nrow(df2)) # Data structure for multiple matrices analytical protocol------------------ sim.lm=list(sim.m,m2) sim.ldf=list(df1,df2) # Computing network metric--------------------------------------------------- t=met.strength(sim.lm,sim.ldf,1) # Node label permutations--------------------------------------------------- t=perm.net.nl(t,labels='age',rf="period",nperm=10,progress=FALSE) # Permuted GLMM------------------------------------------------------------- r.glmm=stat.glmm(ant = t,formula = strength ~ age + (1|id),family = gaussian(), progress=TRUE) # Rstudio parallelization.---------------------------- ## Not run: r.glmm=stat.glmm(t,formula = strength ~ age + (1|id),family = gaussian(), ncores = 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.