residuals | R Documentation |
The conditional residuals are obtained by subtracting the fitted values from the response vector, while the quantile residuals are obtained by inverting the estimated distribution function for each observation to obtain approximately normally distributed residuals. See, for instance, \insertCitedunn1996randomized;textualARCensReg and \insertCitekalliovirta2012misspecification;textualARCensReg.
## S3 method for class 'ARpCRM'
residuals(object, ...)
## S3 method for class 'ARtpCRM'
residuals(object, ...)
object |
An object inheriting from class |
... |
Further arguments passed to or from other methods. |
An object of class "residARpCRM", with the following components:
residuals |
Vector with the conditional residuals of length |
quantile.resid |
Vector with the quantile residuals of length |
Generic function plot
has methods to show a graphic of residual vs. time, an autocorrelation plot, a histogram, and Quantile-Quantile (Q-Q) plot for the quantile residuals.
Fernanda L. Schumacher, Katherine L. Valeriano, Victor H. Lachos, Christian E. Galarza, and Larissa A. Matos
dunn1996randomizedARCensReg
\insertRefkalliovirta2012misspecificationARCensReg
ARCensReg
, ARtCensReg
## Example 1: Generating data with normal innovations
set.seed(93899)
x = cbind(1, runif(300))
dat1 = rARCens(n=300, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05, innov="norm")
# Fitting the model with normal innovations
mod1 = ARCensReg(dat1$data$cc, dat1$data$lcl, dat1$data$ucl, dat1$data$y,
x, p=2, tol=0.001)
mod1$tab
plot(residuals(mod1))
# Fitting the model with Student-t innovations
mod2 = ARtCensReg(dat1$data$cc, dat1$data$lcl, dat1$data$ucl, dat1$data$y,
x, p=2, tol=0.001)
mod2$tab
plot(residuals(mod2))
## Example 2: Generating heavy-tailed data
set.seed(12341)
x = cbind(1, runif(300))
dat2 = rARCens(n=300, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05, innov="t", nu=3)
# Fitting the model with normal innovations
mod3 = ARCensReg(dat2$data$cc, dat2$data$lcl, dat2$data$ucl, dat2$data$y,
x, p=2, tol=0.001)
mod3$tab
plot(residuals(mod3))
# Fitting the model with Student-t innovations
mod4 = ARtCensReg(dat2$data$cc, dat2$data$lcl, dat2$data$ucl, dat2$data$y,
x, p=2, tol=0.001)
mod4$tab
plot(residuals(mod4))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.