| AROC.sp | R Documentation | 
Estimates the covariate-adjusted ROC curve (AROC) using the semiparametric approach proposed by Janes and Pepe (2009).
AROC.sp(formula.healthy, group, tag.healthy, data, 
	est.surv.h = c("normal", "empirical"), p = seq(0, 1, l = 101), B = 1000)
| formula.healthy | A  | 
| group | A character string with the name of the variable that distinguishes healthy from diseased individuals. | 
| tag.healthy | The value codifying the healthy individuals in the variable  | 
| data | Data frame representing the data and containing all needed variables. | 
| est.surv.h | A character string. It indicates how the conditional distribution function of the diagnostic test in healthy population is estimated. Options are "normal" and "empirical" (see Details). The default is "normal". | 
| p | Set of false positive fractions (FPF) at which to estimate the covariate-adjusted ROC curve. | 
| B | An integer value specifying the number of bootstrap resamples for the construction of the confidence intervals. By default 1000. | 
Estimates the covariate-adjusted ROC curve (AROC) defined as
AROC≤ft(t\right) = Pr\{1 - F_{\bar{D}}(Y_D | \mathbf{X}_{D}) ≤q t\},
where F_{\bar{D}}(\cdot|\mathbf{X}_{\bar{D}}) denotes the conditional distribution function for Y_{\bar{D}} conditional on the vector of covariates \mathbf{X}_{\bar{D}}. In particular, the method implemented in this function estimates the outer probability empirically (see Janes and Pepe, 2008) and F_{\bar{D}}(\cdot|\mathbf{X}_{\bar{D}}) is estimated assuming a semiparametric location regression model for Y_{\bar{D}}, i.e.,
Y_{\bar{D}} = \mathbf{X}_{\bar{D}}^{T}\mathbf{β}_{\bar{D}} + σ_{\bar{D}}\varepsilon_{\bar{D}},
such that, for a random sample \{(\mathbf{x}_{\bar{D}i})\}_{i=1}^{n_{\bar{D}}} from the healthy population, we have
F_{\bar{D}}(y | \mathbf{X}_{\bar{D}}=\mathbf{x}_{\bar{D}i}) = F_{\bar{D}}≤ft(\frac{y-\mathbf{x}_{\bar{D}i}^{T}\mathbf{β}_{\bar{D}}}{σ_{\bar{D}}}\right),
where F_{\bar{D}} is the distribution function of \varepsilon_{\bar{D}}. In line with the assumptions made about the distribution of \varepsilon_{\bar{D}}, estimators will be referred to as: (a) "normal", where Gaussian error is assumed, i.e., F_{\bar{D}}(y) = Φ(y); and, (b) "empirical", where no assumption is made about the distribution (in this case, the distribution function F_{\bar{D}} is empirically estimated on the basis of standardised residuals).
As a result, the function provides a list with the following components:
| call | The matched call. | 
| p | Set of false positive fractions (FPF) at which the pooled ROC curve has been estimated | 
| ROC | Estimated covariate-adjusted ROC curve (AROC), and 95% pointwise confidence intervals (if required) | 
| AUC | Estimated area under the covariate-adjusted ROC curve (AAUC), and 95% pointwise confidence intervals (if required). | 
| fit.h | Object of class  | 
| est.surv.h | The value of the argument  | 
Janes, H., and Pepe, M.S. (2009). Adjusting for covariate effects on classification accuracy using the covariate-adjusted receiver operating characteristic curve. Biometrika, 96(2), 371 - 382.
AROC.bnp, AROC.bsp, AROC.sp, AROC.kernel, pooledROC.BB or pooledROC.emp.
library(AROC) data(psa) # Select the last measurement newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),] # Log-transform the biomarker newpsa$l_marker1 <- log(newpsa$marker1) m3 <- AROC.sp(formula.healthy = l_marker1 ~ age, group = "status", tag.healthy = 0, data = newpsa, p = seq(0,1,l=101), B = 500) summary(m3) plot(m3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.