AgePopDenom is an R package designed for geostatistical modeling of fine-scale population age structures. By combining nationally representative survey data (e.g., DHS), geospatial rasters (e.g., population density), and administrative shapefiles, it produces single-year age distributions at a high spatial resolution. This vignette walks you through installing AgePopDenom, setting up a project directory, running the modeling workflow, and creating outputs such as predictive rasters and age pyramids.
A key advantage of AgePopDenom is its simplicity. The init()
and run_full_workflow()
functions handle everything from data retrieval to model fitting and result generation, making it much easier to produce fine-scale demographic maps for public health and development applications. Whether you need to incorporate custom covariates or use your own population rasters, the package is flexible and supports a wide range of user inputs.
Before installing AgePopDenom, ensure your system meets the following requirements:
# Check if Rtools is installed and properly configured pkgbuild::has_build_tools()
If FALSE, download and install Rtools from: CRAN Rtools
macOS
xcode-select --install
brew install gcc
Linux (Ubuntu/Debian)
sudo apt-get update sudo apt-get install build-essential libxml2-dev
Once the setup is complete, follow the instructions below to download AgePopDenom
Note: AgePopDenom is currently under development. Once it is available on CRAN, you will be able to install it using the following command:
# install.packages("AgePopDenom")
To get the development version from GitHub, use:
# install.packages("devtools") devtools::install_github("truenomad/AgePopDenom")
Then load it in R:
library(AgePopDenom)
AgePopDenom provides a streamlined workflow to generate age-specific population estimates at a 5 km x 5 km resolution (by default). The main steps are: 1. Initialize a project 2. Obtain and organize data (survey data, population rasters, shapefiles) 3. Run the geostatistical model 4. Generate spatial predictions 5. Export and visualize results. Below is a typical usage pipeline.
Before starting, ensure you have an RStudio project set up. This will help organize your analysis and outputs into a single, self-contained directory. An RStudio project is essential for maintaining reproducibility and keeping your workflow organized.
Once the RStudio project is created, initialize the project folder structure and create the key scripts by running:
init( r_script_name = "full_pipeline.R", cpp_script_name = "model.cpp" )
The init()
function sets up your project's directory structure and creates necessary script templates. When executed, it creates a standardized folder hierarchy that organizes your data, scripts, and outputs. The function accepts several parameters to customize your setup:
r_script_name
: Names your main R script (defaults to "full_pipeline.R")cpp_script_name
: Names your C++ model script (defaults to "model.cpp")open_r_script
: Controls whether the R script opens automatically after creationsetup_rscript
: Determines if the R script should include template codeThe resulting directory structure includes:
01_data/ 1a_survey_data/ processed/ raw/ 1b_rasters/ urban_extent/ pop_raster/ 1c_shapefiles/ 02_scripts/ 03_outputs/ 3a_model_outputs/ 3b_visualizations/ 3c_table_outputs/ 3d_compiled_results/
and two scripts:
full_pipeline.R (orchestrates the entire analysis)
model.cpp (C++ model for fast optimization)
You can download or place your own survey data into 01_data/1a_survey_data/processed/
. The survey data should contain at least:
To download DHS data, do:
download_dhs_datasets( country_codes = c("GMB"), email = "my_email@example.com", project = "Population project" ) process_dhs_data()
Next, retrieve shapefiles (e.g., WHO boundaries):
download_shapefile("GMB")
Obtain population rasters (e.g., WorldPop):
download_pop_rasters("GMB")
Extract urban extent (included with AgePopDenom or supply your own):
extract_afurextent()
Use run_full_workflow()
to fit the spatial model, predict gamma parameters, and generate aggregated outputs:
run_full_workflow("GMB")
When you call run_full_workflow("country_code")
, AgePopDenom executes the following sub-functions in sequence:
fit_spatial_model()
fit_spatial_model()
fits a parameter-based geostatistical model using Template Model Builder (C++). It reads survey data, then estimates the Gamma shape (α) and scale (λ) parameters at each cluster, accounting for spatial correlation via a distance matrix.
fit_spatial_model( country_code, data, scale_outcome = "log_scale", shape_outcome = "log_shape", covariates = "urban", cpp_script_name = "02_scripts/model", output_dir = "03_outputs/3a_model_outputs" )
This function fits a parameter-based geostatistical model using Template Model Builder (TMB). Parameters:
country_code
: ISO3 country code (e.g., "GMB")data
: Survey data frame containing:lat
, lon
: Geographic coordinatesage_in_years
: Individual agesurban
: Urban/rural indicator (0/1)scale_outcome
: Column name for log scale parametershape_outcome
: Column name for log shape parametercovariates
: Vector of covariate namescpp_script_name
: Path to TMB C++ scriptoutput_dir
: Directory for model outputsmanual_params
: Optional list of manual parameter values:beta1
: Vector of coefficients for scale modelbeta2
: Vector of coefficients for shape modelgamma
: Spatial correlation parameterlog_sigma2
: Log of spatial variancelog_phi
: Log of spatial range parameterlog_tau2_1
: Log of nugget variancecontrol_params
: Optional list of optimization control parameters:trace
: Level of output (0-6)maxit
: Maximum iterationsabs.tol
: Absolute convergence toleranceThe function returns a list containing:
- par
: Named vector of fitted parameters
- objective
: Final objective function value
- convergence
: Convergence status (0 = success)
- scale_formula
, shape_formula
: Model formulas
- variogram
: Fitted variogram object (if applicable)
The manual_params
input in the fit_spatial_model()
function allows users to provide their own initial parameter estimates, offering greater control over the model optimization process. This is especially useful when default estimates from the linear regression or variogram fitting might not suit specific use cases or when prior knowledge of the data suggests alternative starting values.
When using manual_params
, the user must supply a list containing the following required parameters:
beta1
: Coefficients for the scale parameter linear model
beta2
: Coefficients for the shape parameter linear model
gamma
: Coefficient regulating the relationship between the shape and scale parameters
log_sigma2
: Log-transformed variance of the Gaussian process
log_phi
: Log-transformed spatial range parameter, derived from variogram fitting or user input
log_tau2_1
: Log-transformed nugget effect for the Gaussian process
If manual_params
is not provided, the function derives these values using default methods, including linear regression for beta1 and beta2 and an empirical variogram for log_phi. However, when manual_params
is supplied, it overrides these defaults, enabling advanced users to refine model initialization or replicate earlier analyses with exact parameter values.
The parameters serve different modeling purposes:
Fixed Effects Parameters (beta1
, beta2
):
Control the relationship between covariates and the gamma distribution parameters
Typically estimated from initial linear models
Spatial Parameters (log_sigma2
, log_phi
):
Control the spatial correlation structure
log_sigma2
: Determines strength of spatial effectslog_phi
: Controls the effective range of spatial correlation
Error and Correlation Parameters (gamma
, log_tau2_1
):
gamma
: Links shape and scale parameters
log_tau2_1
: Accounts for measurement uncertaintyWhen specifying manual parameters, consider: - Parameter scales (some are log-transformed) - Relationship to your data's spatial structure - Computational stability (avoid extreme values) - Previous successful model fits
The control_params
can be adjusted alongside manual_params
to fine-tune the optimization process:
control_params = list( trace = 3, # Higher values show more optimization details maxit = 2000, # Increase for complex spatial structures abs.tol = 1e-10, # Stricter convergence criteria rel.tol = 1e-8 # Relative convergence tolerance )
Here's the technical implementation:
fit_spatial_model( data = survey_data, scale_outcome = "log_scale", shape_outcome = "log_shape", covariates = "urban", cpp_script_name = "02_scripts/model", manual_params = list( beta1 = c(0.5, -0.3), beta2 = c(0.2, 0.1), gamma = 0.8, log_sigma2 = log(0.5), log_phi = log(100), log_tau2_1 = log(0.1) ), control_params = list( trace = 3, maxit = 2000, abs.tol = 1e-10 ) )
generate_variogram_plot()
This function creates empirical and fitted variograms to assess spatial correlation structure in the data. It visualizes how similarity (in terms of age) between the different cluster locations changes with distance.
generate_variogram_plot( age_param_data, fit_vario, country_code, scale_outcome = "log_scale", output_dir = "03_outputs/3b_visualizations", width = 12, height = 9, png_resolution = 300 )
Parameters:
age_param_data
: Data frame containing survey locations and parametersfit_vario
: Fitted variogram object from spatial modelcountry_code
: ISO3 country codescale_outcome
: Column name for outcome variable ("log_scale" or "log_shape")output_dir
: Directory for saving plotswidth
, height
: Plot dimensions in inchespng_resolution
: Resolution of saved PNG file in DPIThe function: - Computes empirical variogram from data points - Overlays fitted theoretical variogram - Creates diagnostic plot showing spatial correlation decay - Saves plot as PNG file in specified output directory
Returns: - ggplot2 object of variogram plot - Saved PNG file in output directory
create_prediction_data()
This function builds a gridded dataset at \~5 km resolution, merging population rasters, urban-rural classification, and admin boundaries. Ensures each cell is linked to the proper covariates.
create_prediction_data( country_code, country_shape, pop_raster, ur_raster, adm2_shape, cell_size = 5000, ignore_cache = FALSE, output_dir = "03_outputs/3a_model_outputs" )
Creates a regular grid for predictions. Parameters:
country_code
: ISO3 country codecountry_shape
: sf object of country boundarypop_raster
: Population density rasterur_raster
: Urban/rural classification rasteradm2_shape
: Administrative boundaries (sf object)cell_size
: Grid resolution in metersignore_cache
: Whether to regenerate existing gridsoutput_dir
: Output directory for grid dataThe grid includes: - Centroid coordinates - Population values - Urban/rural classification - Administrative unit IDs
generate_gamma_predictions()
This function uses the fitted model parameters to simulate Gamma distributions at unobserved locations. Produces shape and scale estimates plus uncertainties.
generate_gamma_predictions( country_code, age_param_data, model_params, predictor_data, shapefile, cell_size = 5000, n_sim = 5000, ignore_cache = FALSE, output_dir = "03_outputs/3a_model_outputs" )
Parameters:
country_code
: ISO3 country code
age_param_data
: Fitted parameters at survey locations
model_params
: List of model parameters from fit_spatial_model()
predictor_data
: Grid cells for prediction
shapefile
: Administrative boundaries
cell_size
: Grid resolution
n_sim
: Number of Monte Carlo simulations
ignore_cache
: Whether to use cached predictions
output_dir
: Output directory
Returns:
generate_gamma_raster_plot()
This function converts shape, scale, and derived mean-age predictions into rasters. Creates exploratory maps for validation or visual inspection.
generate_gamma_raster_plot( predictor_data, pred_list, country_code, output_dir = "03_outputs/3b_visualizations", save_raster = TRUE )
Parameters:
predictor_data
: Grid cell data
pred_list
: Prediction results
country_code
: ISO3 country code
output_dir
: Output directory
save_raster
: Whether to save raster files
Produces:
Shape parameter raster
Scale parameter raster
Mean age raster
generate_age_pop_table()
This function computes age-specific population counts by applying Gamma-based proportions to population rasters. Aggregates counts and proportions at selected administrative levels (e.g., district, region).
generate_age_pop_table( predictor_data, scale_pred, shape_pred, country_code, age_range = c(0, 99), age_interval = 1, ignore_cache = FALSE, output_dir = "03_outputs/3c_table_outputs" )
Parameters:
predictor_data
: Grid cell data
scale_pred
, shape_pred
: Predicted parameters
country_code
: ISO3 country code
age_range
: Vector of min/max ages
age_interval
: Age grouping interval
ignore_cache
: Whether to use cached results
output_dir
: Output directory
Produces two data frames:
prop_df
: Age proportions with uncertainty
pop_df
: Population counts with uncertainty
generate_age_pyramid_plot()
This function creates population pyramids (either counts or proportions) for visualizing demographic structures across user-defined geographic units.
generate_age_pyramid_plot( dataset, country_code, output_dir = "03_outputs/3b_visualizations" )
Parameters:
dataset
: List containing prop_df and pop_df
country_code
: ISO3 country code
output_dir
: Output directory
fill_high
, fill_low
: Color gradient endpoints
line_color
: Bar outline color
break_axis_by
: Age axis interval
Creates:
process_final_population_data()
This function summarizes final outputs into Excel or CSV files. Allows users to retrieve final aggregated counts, proportions, and uncertainties for reporting.
process_final_population_data( input_dir = "03_outputs/3c_table_outputs", excel_output_file = "03_outputs/3d_compiled_results/age_pop_denom_compiled.xlsx" )
Parameters: - input_dir
: Directory containing results - excel_output_file
: Path for Excel outpu
Produces: - The function writes an Excel spreadhseet with six sheets containing population counts and proportions at different administrative levels (country, region, district).
By allowing you to pass parameters to the underlying functions, run_full_workflow()
offers both flexibility and efficiency in managing the geostatistical modeling process. Each sub-function within the workflow accepts a variety of parameters, enabling advanced users to tailor the workflow to their specific needs. These parameters support customization of datasets, modeling approaches (including initial model parameters and additional covariates), grid resolutions, output formats, and caching options. This level of control ensures that the workflow aligns with the specific analytical requirements of the user.
To demonstrate AgePopDenom, we provide an example workflow using simulated DHS-like data for Gambia. This enables users to replicate fine-scale age-structured population modeling locally without requiring restricted data access. The example covers directory setup, dummy data simulation, and running the full modeling workflow.
init( r_script_name = "full_pipeline.R", cpp_script_name = "model.cpp", open_r_script = FALSE ) # set up country code cntry_code = "GMB" # Gather and process datasets --------------------------------------- # Set parameters for simulation total_population <- 266 urban_proportion <- 0.602 total_coords <- 266 lon_range <- c(-16.802, -13.849) lat_range <- c(13.149, 13.801) mean_web_x <- -1764351 mean_web_y <- 1510868 # Simulate processed survey dataset for Gambia set.seed(123) df_gambia <- NULL df_gambia$age_param_data <- dplyr::tibble( country = "Gambia", country_code_iso3 = "GMB", country_code_dhs = "GM", year_of_survey = 2024, id_coords = rep(1:total_coords, length.out = total_population), lon = runif(total_population, lon_range[1], lon_range[2]), lat = runif(total_population, lat_range[1], lat_range[2]), web_x = rnorm(total_population, mean_web_x, 50000), web_y = rnorm(total_population, mean_web_y, 50000), log_scale = rnorm(total_population, 2.82, 0.2), log_shape = rnorm(total_population, 0.331, 0.1), urban = rep(c(1,0), c( round(total_population * urban_proportion), total_population - round(total_population * urban_proportion))), b1 = rnorm(total_population, 0.0142, 0.002), c = rnorm(total_population, -0.00997, 0.001), b2 = rnorm(total_population, 0.00997, 0.002), nsampled = sample(180:220, total_population, replace = TRUE)) # save as processed dhs data saveRDS( df_gambia, file = here::here( "01_data", "1a_survey_data", "processed", "dhs_pr_records_combined.rds")) # Download shapefiles download_shapefile(cntry_code) # Download population rasters from worldpop download_pop_rasters(cntry_code) # Extract urban extent raster extract_afurextent() # Run models and get outputs ------------------------------------------ # Run the full model workflow run_full_workflow(cntry_code)
For more detailed information on advanced usage (e.g., integrating additional covariates, applying user-supplied rasters), consult the function-specific help files. We hope this package empowers you to reliably estimate age-structured population counts in diverse contexts and at finer geographic scales than was previously feasible.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.