View source: R/LM_i_analysis.R
LM_i | R Documentation |
Linear, quadratic, quadratic inverse, cubic and quartic regression.
LM_i(
trat,
resp,
sample.curve = 1000,
ylab = "Dependent",
error = "SE",
ic = FALSE,
fill.ic = "gray70",
alpha.ic = 0.5,
xlab = "Independent",
degree = NA,
theme = theme_classic(),
legend.position = "top",
point = "all",
r2 = "all",
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)
trat |
Numeric vector with dependent variable. |
resp |
Numeric vector with independent variable. |
sample.curve |
Provide the number of observations to simulate curvature (default is 1000) |
ylab |
Dependent variable name (Accepts the expression() function) |
error |
Error bar (It can be SE - default, SD or FALSE) |
ic |
Add interval of confidence |
fill.ic |
Color interval of confidence |
alpha.ic |
confidence interval transparency level |
xlab |
Independent variable name (Accepts the expression() function) |
degree |
degree of the polynomial (0.5, 1, 2, 3 or 4) |
theme |
ggplot2 theme (default is theme_classic()) |
legend.position |
legend position (default is "top") |
point |
defines whether you want to plot all points ("all") or only the mean ("mean") |
r2 |
coefficient of determination of the mean or all values (default is all) |
width.bar |
Bar width |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
linetype |
line type |
pointshape |
format point (default is 21) |
fillshape |
Fill shape |
colorline |
Color lines |
round |
round equation |
xname.formula |
Name of x in the equation |
yname.formula |
Name of y in the equation |
comment |
Add text after equation |
fontfamily |
Font family |
The linear model is defined by:
y = \beta_1\cdot x
The quadratic model is defined by:
y = \beta_1\cdot x + \beta_2\cdot x^2
The quadratic inverse model is defined by:
y = \beta_1\cdot x + \beta_2\cdot x^{0.5}
The cubic model is defined by:
y = \beta_1\cdot x + \beta_2\cdot x^2 + \beta_3\cdot x^3
The quartic model is defined by:
y = \beta_1\cdot x + \beta_2\cdot x^2 + \beta_3\cdot x^3+ \beta_4\cdot x^4
The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
library(AgroReg)
data("aristolochia")
attach(aristolochia)
LM_i(trat,resp, degree = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.