Description Usage Arguments Value See Also Examples
View source: R/pat_aggregateOutlierCounts.R
Aggregate data with count of outliers in each bin
1 2 3 4 5 6 7 | pat_aggregateOutlierCounts(
pat = NULL,
unit = "minutes",
count = 60,
windowSize = 23,
thresholdMin = 8
)
|
pat |
PurpleAir Timeseries pat object. |
unit |
Character string specifying temporal units for binning. |
count |
Number of units per bin. |
windowSize |
the size of the rolling window. Must satisfy windowSize <= count. |
thresholdMin |
the minimum threshold value to detect outliers via hampel filter |
data.frame
A data.frame with flag counts per bin.
pat_aggregateData
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | library(AirSensor)
library(ggplot2)
df <-
pat_aggregateOutlierCounts(example_pat_failure_A)
# Plot the counts
multi_ggplot(
# A Channel
ggplot(df, aes(x = datetime, y = pm25_A_outlierCount)) + geom_point(),
# B Channel
ggplot(df, aes(x = datetime, y = pm25_B_outlierCount)) + geom_point(),
# Humidity
ggplot(df, aes(x = datetime, y = humidity_outlierCount)) + geom_point(),
# Temperature
ggplot(df, aes(x = datetime, y = temperature_outlierCount)) + geom_point()
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.