Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7,
fig.height = 5,
warning = FALSE, # Suppress warnings in output
message = FALSE # Suppress messages in output
)
# Set eval=FALSE for examples requiring Strava API interaction
# Users should run these interactively with a valid stoken
EVAL_EXAMPLES <- FALSE
## ----setup--------------------------------------------------------------------
library(Athlytics)
library(rStrava) # Required for authentication
## ----load_exposure_example, eval=EVAL_EXAMPLES--------------------------------
# # Calculate using approximate TSS for Rides (Requires FTP)
# exposure_data_tss <- calculate_exposure(
# stoken = stoken_placeholder,
# activity_type = "Ride",
# load_metric = "tss",
# user_ftp = 280, # Example FTP, replace with yours
# acute_period = 7,
# chronic_period = 28
# )
#
# # Plot the result
# plot_exposure(exposure_data = exposure_data_tss, risk_zones = TRUE)
#
# # Calculate using approximate HRSS for Runs (Requires Max & Resting HR)
# hrss_data <- calculate_exposure(
# stoken = stoken_placeholder,
# activity_type = "Run",
# load_metric = "hrss",
# user_max_hr = 190, # Example Max HR
# user_resting_hr = 50, # Example Resting HR
# acute_period = 7,
# chronic_period = 42
# )
#
# plot_exposure(exposure_data = hrrss_data, risk_zones = TRUE)
## ----acwr_trend_example, eval=EVAL_EXAMPLES-----------------------------------
# # Calculate ACWR using duration for Runs
# acwr_data_run <- calculate_acwr(
# stoken = stoken_placeholder,
# activity_type = "Run",
# load_metric = "duration_mins",
# acute_period = 7,
# chronic_period = 28
# )
#
# # Plot the trend
# plot_acwr(acwr_data = acwr_data_run, highlight_zones = TRUE)
## ----ef_trend_example, eval=EVAL_EXAMPLES-------------------------------------
# # Calculate EF (Pace/HR) for Runs and Rides
# ef_data_pacehr <- calculate_ef(
# stoken = stoken_placeholder,
# activity_type = c("Run", "Ride"),
# ef_metric = "Pace_HR"
# )
#
# # Plot the trend
# plot_ef(ef_data = ef_data_pacehr, add_trend_line = TRUE)
## ----pbs_example, eval=EVAL_EXAMPLES------------------------------------------
# # Calculate PBs for 1k, 5k, 10k Runs
# # Limit activities checked for speed
# pb_data_run <- calculate_pbs(
# stoken = stoken_placeholder,
# distance_meters = c(1000, 5000, 10000),
# activity_type = "Run",
# max_activities = 50 # Limit for example
# )
#
# # Plot the progression, highlighting new PBs
# plot_pbs(pb_data = pb_data_run)
## ----decoupling_example, eval=EVAL_EXAMPLES-----------------------------------
# # Calculate Pace/HR decoupling for Runs
# # Limit activities checked for speed
# decoupling_data_run <- calculate_decoupling(
# stoken = stoken_placeholder,
# activity_type = "Run",
# decouple_metric = "Pace_HR",
# max_activities = 20 # Limit for example
# )
#
# # Plot the trend
# plot_decoupling(decoupling_data = decoupling_data_run, add_trend_line = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.