knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
BCClong
is an R package for performing Bayesian Consensus Clustering (BCC) model for clustering continuous, discrete and categorical longitudinal data, which are commonly seen in many clinical studies. This document gives a tour of BCClong package.
see help(package = "BCClong")
for more information and references provided by citation("BCClong")
To download BCClong, use the following commands:
require("devtools") devtools::install_github("ZhiwenT/BCClong", build_vignettes = TRUE) library("BCClong")
To list all functions available in this package:
ls("package:BCClong")
Currently, there are 5 function in this package which are BCC.multi, BayesT, model.selection.criteria, traceplot, trajplot.
BCC.multi function performs clustering on mixed-type (continuous, discrete and categorical) longitudinal markers using Bayesian consensus clustering method with MCMC sampling and provide a summary statistics for the computed model. This function will take in a data set and multiple parameters and output a BCC model with summary statistics.
BayesT function assess the model goodness of fit by calculate the discrepancy measure T(\bm{\y}, \bm{\Theta}) with following steps (a) Generate T.obs based on the MCMC samples (b) Generate T.rep based on the posterior distribution of the parameters (c) Compare T.obs and T.rep, and calculate the P values.
model.selection.criteria function calculates DIC and WAIC for the fitted model traceplot function visualize the MCMC chain for model parameters trajplot function plot the longitudinal trajectory of features by local and global clustering
In this example, the epileptic.qol
data set from joinrRML
package was used. The variables used here include anxiety score
, depress score
and AEP score
. All of the variables are continuous.
library(BCClong) library(joineRML) library(ggplot2) library(cowplot) # convert days to months epileptic.qol$time_month <- epileptic.qol$time/30.25 # Sort by ID and time epileptic.qol <- epileptic.qol[order(epileptic.qol$id,epileptic.qol$time_month),] ## Make Spaghetti Plots to Visualize p1 <- ggplot(data =epileptic.qol, aes(x =time_month, y = anxiety, group = id))+ geom_point() + geom_line() + geom_smooth(method = "loess", size = 1.5,group =1,se = FALSE, span=2) + theme(legend.position = "none", plot.title = element_text(size = 20, face = "bold"), axis.text=element_text(size=20), axis.title=element_text(size=20), axis.text.x = element_text(angle = 0 ), strip.text.x = element_text(size = 20, angle = 0), strip.text.y = element_text(size = 20,face="bold")) + xlab("Time (months)") + ylab("anxiety") p2 <- ggplot(data =epileptic.qol, aes(x =time_month, y = depress, group = id))+ geom_point() + geom_line() + geom_smooth(method = "loess", size = 1.5,group =1,se = FALSE, span=2) + theme(legend.position = "none", plot.title = element_text(size = 20, face = "bold"), axis.text=element_text(size=20), axis.title=element_text(size=20), axis.text.x = element_text(angle = 0 ), strip.text.x = element_text(size = 20, angle = 0), strip.text.y = element_text(size = 20,face="bold")) + xlab("Time (months)") + ylab("depress") p3 <- ggplot(data =epileptic.qol, aes(x =time_month, y = aep, group = id))+ geom_point() + geom_line() + geom_smooth(method = "loess", size = 1.5,group =1,se = FALSE, span=2) + theme(legend.position = "none", plot.title = element_text(size = 20, face = "bold"), axis.text=element_text(size=20), axis.title=element_text(size=20), axis.text.x = element_text(angle = 0 ), strip.text.x = element_text(size = 20, angle = 0), strip.text.y = element_text(size = 20,face="bold")) + xlab("Time (months)") + ylab("aep") plot_grid(p1,NULL,p2,NULL,p3,NULL,labels=c("(A)","", "(B)","","(C)",""), nrow = 1, align = "v", rel_widths = c(1,0.1,1,0.1,1,0.1)) epileptic.qol$anxiety_scale <- scale(epileptic.qol$anxiety) epileptic.qol$depress_scale <- scale(epileptic.qol$depress) epileptic.qol$aep_scale <- scale(epileptic.qol$aep) dat <- epileptic.qol
We can compute the mean adjusted adherence to determine the number of clusters using the code below. Since this program takes a long time to run, this chunk of code will not run in this tutorial file.
# computed the mean adjusted adherence to determine the number of clusters set.seed(20220929) alpha.adjust <- NULL DIC <- WAIC <- NULL for (k in 1:5){ fit.BCC <- BCC.multi ( mydat = list(dat$anxiety_scale,dat$depress_scale,dat$aep_scale), dist = c("gaussian"), id = list(dat$id), time = list(dat$time), formula =list(y ~ time + (1 |id)), num.cluster = k, initials= NULL, burn.in = 1000, thin = 10, per = 100, max.iter = 2000) alpha.adjust <- c(alpha.adjust, fit.BCC$alpha.adjust) res <- model.selection.criteria(fit.BCC, fast_version=0) DIC <- c(DIC,res$DIC) WAIC <- c(WAIC,res$WAIC)} num.cluster <- 1:5 par(mfrow=c(1,3)) plot(num.cluster[2:5], alpha.adjust, type="o",cex.lab=1.5,cex.axis=1.5,cex.main=1.5,lwd=2, xlab="Number of Clusters", ylab="mean adjusted adherence",main="mean adjusted adherence") plot(num.cluster, DIC, type="o",cex=1.5, cex.lab=1.5,cex.axis=1.5,cex.main=1.5,lwd=2, xlab="Number of Clusters",ylab="DIC",main="DIC") plot(num.cluster, WAIC, type="o",cex=1.5, cex.lab=1.5,cex.axis=1.5,cex.main=1.5,lwd=2, xlab="Number of Clusters",ylab="WAIC",main="WAIC")
Here, We used gaussian distribution for all three markers. The number of clusters was set to 2 because it has highest mean adjusted adherence. All hyper parameters were set to default.
For the purpose of this tutorial, the MCMC iteration will be set to a small number to minimize the compile time and the result will be read from the pre-compiled RData file using data(epil1), data(epil1)
and data(epil1)
# Fit the final model with the number of cluster 2 (largest mean adjusted adherence) fit.BCC2 <- BCC.multi ( mydat = list(dat$anxiety_scale,dat$depress_scale,dat$aep_scale), dist = c("gaussian"), id = list(dat$id), time = list(dat$time), formula =list(y ~ time + (1|id)), num.cluster = 2, burn.in = 10, # number of samples discarded thin = 1, # thinning per = 10, # output information every "per" iteration max.iter = 30) # maximum number of iteration fit.BCC2b <- BCC.multi ( mydat = list(dat$anxiety_scale,dat$depress_scale,dat$aep_scale), dist = c("gaussian"), id = list(dat$id), time = list(dat$time), formula =list(y ~ time + (1 + time|id)), num.cluster = 2, burn.in = 10, thin = 1, per = 10, max.iter = 30) fit.BCC2c <- BCC.multi ( mydat = list(dat$anxiety_scale,dat$depress_scale,dat$aep_scale), dist = c("gaussian"), id = list(dat$id), time = list(dat$time), formula =list(y ~ time + time2 + (1 + time|id)), num.cluster = 2, burn.in = 10, thin = 1, per = 10, max.iter = 30)
Load the pre-compiled results
data(epil1) data(epil2) data(epil3) fit.BCC2 <- epil1 fit.BCC2b <- epil2 fit.BCC2c <- epil3 fit.BCC2b$cluster.global <- factor(fit.BCC2b$cluster.global, labels=c("Cluster 1","Cluster 2")) table(fit.BCC2$cluster.global, fit.BCC2b$cluster.global) fit.BCC2c$cluster.global <- factor(fit.BCC2c$cluster.global, labels=c("Cluster 1","Cluster 2")) table(fit.BCC2$cluster.global, fit.BCC2c$cluster.global)
To print the BCC model
print(fit.BCC2)
To print the summary statistics for all parameters
summary(fit.BCC2)
To print the proportion \pi for each cluster (mean, sd, 2.5% and 97.5% percentile) geweke statistics (geweke.stat) between -2 and 2 suggests the parameters converge
fit.BCC2$summary.stat$PPI
The code below prints out all major parameters
summary(fit.BCC2)
Generic plot can be used on BCC object, all relevant plots will be generate one by one using return key
plot(fit.BCC2)
We can also use the traceplot function to plot the MCMC process and the trajplot function to plot the trajectory for each feature.
#=====================================================# # Trace-plot for key model parameters #=====================================================# traceplot(fit=fit.BCC2, parameter="PPI",ylab="pi",xlab="MCMC samples") traceplot(fit=fit.BCC2, parameter="ALPHA",ylab="alpha",xlab="MCMC samples") traceplot(fit=fit.BCC2,cluster.indx = 1, feature.indx=1,parameter="GA",ylab="GA",xlab="MCMC samples") traceplot(fit=fit.BCC2,cluster.indx = 1, feature.indx=2,parameter="GA",ylab="GA",xlab="MCMC samples") traceplot(fit=fit.BCC2,cluster.indx = 1, feature.indx=3,parameter="GA",ylab="GA",xlab="MCMC samples") traceplot(fit=fit.BCC2,cluster.indx = 2, feature.indx=1,parameter="GA",ylab="GA",xlab="MCMC samples") traceplot(fit=fit.BCC2,cluster.indx = 2, feature.indx=2,parameter="GA",ylab="GA",xlab="MCMC samples") traceplot(fit=fit.BCC2,cluster.indx = 2, feature.indx=3,parameter="GA",ylab="GA",xlab="MCMC samples")
#=====================================================# # Trajectory plot for features #=====================================================# gp1 <- trajplot(fit=fit.BCC2,feature.ind=1, which.cluster = "local.cluster", title= bquote(paste("Local Clustering (",hat(alpha)[1] ==.(round(fit.BCC2$alpha[1],2)),")")), xlab="time (months)",ylab="anxiety",color=c("#00BA38", "#619CFF")) gp2 <- trajplot(fit=fit.BCC2,feature.ind=2, which.cluster = "local.cluster", title= bquote(paste("Local Clustering (",hat(alpha)[2] ==.(round(fit.BCC2$alpha[2],2)),")")), xlab="time (months)",ylab="depress",color=c("#00BA38", "#619CFF")) gp3 <- trajplot(fit=fit.BCC2,feature.ind=3, which.cluster = "local.cluster", title= bquote(paste("Local Clustering (",hat(alpha)[3] ==.(round(fit.BCC2$alpha[3],2)),")")), xlab="time (months)",ylab="aep",color=c("#00BA38", "#619CFF")) gp4 <- trajplot(fit=fit.BCC2,feature.ind=1, which.cluster = "global.cluster", title="Global Clustering",xlab="time (months)",ylab="anxiety",color=c("#00BA38", "#619CFF")) gp5 <- trajplot(fit=fit.BCC2,feature.ind=2, which.cluster = "global.cluster", title="Global Clustering",xlab="time (months)",ylab="depress",color=c("#00BA38", "#619CFF")) gp6 <- trajplot(fit=fit.BCC2,feature.ind=3, which.cluster = "global.cluster", title="Global Clustering", xlab="time (months)",ylab="aep",color=c("#00BA38", "#619CFF")) library(cowplot) plot_grid(gp1, gp2,gp3,gp4,gp5,gp6, labels=c("(A)", "(B)", "(C)", "(D)", "(E)", "(F)"), ncol = 3, align = "v" ) plot_grid(gp1,NULL,gp2,NULL,gp3,NULL, gp4,NULL,gp5,NULL,gp6,NULL, labels=c("(A)","", "(B)","","(C)","","(D)","","(E)","","(F)",""), nrow = 2, align = "v", rel_widths = c(1,0.1,1,0.1,1,0.1))
The BayesT function will be used for posterior check. Here we used the pre-compiled results, un-comment the line res <- BayesT(fit=fit.BCC2)
to try your own. The pre-compiled data file can be attached using data("conRes")
For this function, the p-value between 0.3 to 0.7 was consider reasonable. In the scatter plot, the data pints should be evenly distributed around y = x.
#res <- BayesT(fit=fit.BCC2) data("conRes") res <- conRes plot(log(res$T.obs),log(res$T.rep),xlim=c(8.45,8.7), cex=1.5, ylim=c(8.45,8.7),xlab="Observed T statistics (in log scale)", ylab = "Predicted T statistics (in log scale)") abline(0,1,lwd=2,col=2) p.value <- sum(res$T.rep > res$T.obs)/length(res$T.rep) p.value fit.BCC2$cluster.global <- factor(fit.BCC2$cluster.global,labels=c("Cluster 1","Cluster 2")) boxplot(fit.BCC2$postprob ~ fit.BCC2$cluster.global,ylim=c(0,1),xlab="",ylab="Posterior Cluster Probability")
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.