Nothing
#' BEKKs: Volatility modelling
#'
#' @docType package
#' @aliases _PACKAGE
#' @name BEKKs
#' @author \itemize{
#' \item Markus J. Fülle \email{fuelle@uni-goettingen.de}
#' \item Helmut Herwartz \email{hherwartz@uni-goettingen.de}
#' \item Alexander Lange \email{alexander.lange@uni-goettingen.de}
#' \item Christian M. Hafner \email{christian.hafner@uclouvain.be}
#' }
#'
#' @import mathjaxr
#' @description
#' \loadmathjax
#' This package implements estimation, simulation and forecasting techniques for conditional volatility modelling using the BEKK model. We refer the reader to Fülle et al. (2024) for a package overview.
#' The full BEKK(1,1,1) model of Engle and Kroner (1995)
#' \mjdeqn{H_t = CC' + A' r_{t-1} r_{t-1}'A + G' H_{t-1}G ,}{H_t = CC' + A' r_{t-1} r_{t-1}'A + G' H_{t-1}G ,} the asymmetric extensions of Kroner and Ng (1998) and Grier et. al. (2004)
#' \mjdeqn{H_t = CC' + A' r_{t-1} r_{t-1}'A +B'\gamma_{t-1} \gamma_{t-1}' B+G'H_{t-1}G}{H_t = CC' +A'r_{t-1} r_{t-1}'A +B'\gamma_{t-1} \gamma_{t-1}' B+G'H_{t-1}G,,}
#' with \mjdeqn{\gamma_t = r_t I\left(r_t < 0 \right)}{\gamma_t = r_t I(r_t < 0 )} are implemented.
#' Moreover, the diagonal BEKK, where the parameter matrices A, B and G are reduced to diagonal matrices and
#' the scalar BEKK model of Ding and Engle (2001)
#' \mjdeqn{H_t = CC' + a r_{t-1} r_{t-1}' + g H_{t-1},}{H_t = CC' + a r_{t-1} r_{t-1}' + g H_{t-1},}
#' where a and g are scalar parameters and are implemented to allow faster but less flexible estimation in higher dimensions.
#' @details
#' The main functions are:
#' \itemize{
#' \item \tabular{ll}{ \code{\link{bekk_spec}} \tab Specifies the model type to be estimated.}
#' \item \tabular{ll}{\code{\link{bekk_fit}} \tab Estimates a BEKK(1,1,1) model of a given series and
#' specification object \link{bekk_spec}.}
#' \item \tabular{ll}{ \code{\link{simulate}} \tab Simulates a BEKK(1,1,1) process using either a \link{bekk_fit} or \link{bekk_spec} object.}
#' \item \tabular{ll}{ \code{\link{predict}} \tab Forecasts conditional volatility using a \link{bekk_fit} object.}
#' \item \tabular{ll}{ \code{\link{VaR}} \tab Estimates (portfolio) Value-at-Risk using a fitted BEKK(1,1,1) model.}
#' \item \tabular{ll}{ \code{\link{backtest}} \tab Backtesting estimated (portfolio) value-at-risks of a fitted BEKK(1,1,1) model.}
#' \item \tabular{ll}{ \code{\link{virf}} \tab Calculates volatility impulse response functions for fitted symmetric BEKK(1,1,1) models.}
#' }
#' @references Engle, R. F. and K. F. Kroner (1995). Multivariate simultaneous generalized arch. Econometric Theory 11(1),122-150.
#' @references Fülle, M. J., A. Lange, C. M. Hafner, and H. Herwartz (2024). BEKKs: An R package for estimation of
#' conditional volatility of multivariate time series. Journal of Statistical Software 111 (4), 1–34. <doi:10.18637/jss.v111.i04>.
#' @references Kroner, K. F. and V. K. Ng (1998). Modeling asymmetric comovements of asset returns. Review of Financial Studies 11(4), 817-44.
#' @references Ding, Zhuanxin and Engle, Robert F (2001). Large scale conditional covariance matrix modeling, estimation and testing. NYU working paper No. Fin-01-029.
#' @references Grier, K. B., Olan T. Henry, N. Olekalns, and K. Shields (2004). The asymmetric effects of uncertainty on inflation and output growth. Journal of Applied Econometrics 19(5), 551-565.
#' @references Hafner CM, Herwartz H (2006). Volatility impulse responses for multivariate GARCH models: An exchange rate illustration. Journal of International Money and Finance,25,719-740.
#' @useDynLib BEKKs
#' @importFrom Rcpp sourceCpp
#' @md
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.