Nothing
The {BLCOP}
package is an implementation of the Black-Litterman and
copula opinion pooling frameworks. The Black-Litterman model was devised
in 1992 by Fisher Black and Robert Litterman. Their goal was to create a
systematic method of specifying and then incorporating analyst/portfolio
manager views into the estimation of market parameters.
BLViews()
and COPViews()
construct views objectsaddBLViews()
and addCOPViews()
allow more views to be added to
existing objectsdistribution()
and mvdistribution()
create distribution
and
mvdistribution
objectsBLPosterior()
calculates the posterior distribution using the
Black-Litterman modelCOPPosterior()
calculates the posterior distribution using copula
opinion poolingYou can install the released version of BLCOP from CRAN with:
install.packages("BLCOP")
And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("MangoTheCat/BLCOP")
library(BLCOP)
# For a matrix of monthly returns for 6 assets
head(monthlyReturns)
#> IBM MS DELL C JPM BAC
#> 1998-02-02 0.057620253 0.19578623 0.40667739 0.1224778047 0.157384084 0.143954576
#> 1998-03-02 -0.005457679 0.04383326 -0.51565628 0.0785547367 0.087215863 0.064817518
#> 1998-04-01 0.115529027 0.08233841 0.19188192 0.0198333333 0.027283511 0.041952290
#> 1998-05-01 0.014067489 -0.01027006 0.02055728 0.0009805524 -0.018908776 -0.006578947
#> 1998-06-01 -0.022893617 0.17050986 0.12619828 -0.0101224490 -0.444607915 0.015761589
#> 1998-07-01 0.154080655 -0.04717084 0.17002478 0.1091868712 0.001589404 0.039900900
# Define a pick matrix (a vector of confidences)
pickMatrix <- matrix(c(1/2, -1, 1/2, 0, 0, 0),
nrow = 1,
ncol = 6)
# Create a views object
views <- BLViews(P = pickMatrix,
q = 0.06,
confidences = 100,
assetNames = colnames(monthlyReturns))
# Determine the posterior distribution of these assets
BLPosterior(monthlyReturns, views, tau = 1/2, marketIndex = sp500Returns)
#> Prior means:
#> IBM MS DELL C JPM BAC
#> 0.002269870 0.005799591 -0.001161339 0.001718354 -0.009042287 0.005472691
#> Posterior means:
#> IBM MS DELL C JPM BAC
#> 0.009795730 -0.016744179 0.014453759 -0.004741680 -0.015465517 0.001505639
#> Posterior covariance:
#> IBM MS DELL C JPM BAC
#> IBM 0.022113337 0.011762652 0.013388809 0.009418743 0.01189892 0.006017050
#> MS 0.011762652 0.033040555 0.018441735 0.014076656 0.01650328 0.009143918
#> DELL 0.013388809 0.018441735 0.048344919 0.008453909 0.01088555 0.005957519
#> C 0.009418743 0.014076656 0.008453909 0.017307957 0.01246270 0.007215142
#> JPM 0.011898924 0.016503281 0.010885549 0.012462701 0.03032755 0.012937189
#> BAC 0.006017050 0.009143918 0.005957519 0.007215142 0.01293719 0.011893184
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.