prob_zk | R Documentation |
Computes the posterior and plots probability density function (PDF) at a single unobserved spatial location using the Bayesian Maximum Entropy (BME) framework. This function integrates both hard data (precise measurements) and soft data (interval or uncertain observations), together with a specified variogram model, to numerically estimate the posterior density across a range of possible values.
prob_zk(x, data_object, model, nugget, sill, range,
nsmax = 5, nhmax = 5, n = 50,
zk_range = extended_range(data_object))
x |
A two-column matrix of spatial coordinates for a single estimation location. |
data_object |
A list containing the hard and soft data. |
model |
A string specifying the variogram or covariance model to use
(e.g., |
nugget |
A non-negative numeric value for the nugget effect in the variogram model. |
sill |
A numeric value representing the sill (total variance) in the variogram model. |
range |
A positive numeric value for the range (or effective range) parameter of the variogram model. |
nsmax |
An integer specifying the maximum number of nearby soft data points to include for estimation (default is 5). |
nhmax |
An integer specifying the maximum number of nearby hard data points to include for estimation (default is 5). |
n |
An integer indicating the number of points at which to evaluate the
posterior density over |
zk_range |
A numeric vector specifying the range over which to evaluate
the unobserved value at the estimation location ( |
A data frame with two columns: zk_i
(assumed zk values) and
prob_zk_i
(corresponding posterior densities).
data("utsnowload")
x <- utsnowload[1, c("latitude", "longitude")]
ch <- utsnowload[2:67, c("latitude", "longitude")]
cs <- utsnowload[68:232, c("latitude", "longitude")]
zh <- utsnowload[2:67, "hard"]
a <- utsnowload[68:232, "lower"]
b <- utsnowload[68:232, "upper"]
data_object <- bme_map(ch, cs, zh, a , b)
prob_zk(x, data_object, model = "exp",
nugget = 0.0953, sill = 0.3639, range = 1.0787)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.