library(knitr) opts_chunk$set(error = FALSE) library(BOSO) library(dplyr) library(kableExtra) library(glmnet) library(ggplot2) library(ggpubr)
##BiocStyle::markdown()
BOSO can be installed from CRAN repository:
install.packages("BOSO")
Note that it is necessary to have IBM ILOG CPLEX installed, with a version greater than 12.1, and the cplexAPI package, which is used to invoke CPLEX from R environment.
Furthermore, check if packages are installed. Check if bestsubset is installed. If not, source necessary functions from bestsubset.
if (!requireNamespace('cplexAPI', quietly = TRUE)) { testthat::skip('Package cplexAPI not installed (required for this vignette)!\n Install it from CRAN: https://cran.r-project.org/web/packages/cplexAPI/index.html') stop('Package cplexAPI not installed (required for this vignette)!\n Install it from CRAN: https://cran.r-project.org/web/packages/cplexAPI/index.html', call. = FALSE) }
if (!requireNamespace('bestsubset', quietly = TRUE)) { devtools::source_url("https://raw.githubusercontent.com/ryantibs/best-subset/master/bestsubset/R/fs.R") devtools::source_url("https://raw.githubusercontent.com/ryantibs/best-subset/master/bestsubset/R/lasso.R") devtools::source_url("https://raw.githubusercontent.com/ryantibs/best-subset/master/bestsubset/R/sim.R") enlist <- function (...) { result <- list(...) if ((nargs() == 1) & is.character(n <- result[[1]])) { result <- as.list(seq(n)) names(result) <- n for (i in n) result[[i]] <- get(i) } else { n <- sys.call() n <- as.character(n)[-1] if (!is.null(n2 <- names(result))) { which <- n2 != "" n[which] <- n2[which] } names(result) <- n } result } } else {require("bestsubset")}
The package is designed to run the BOSO algorithm in one single function, which comprises two steps: block strategy and final problem.
The block strategy is a pre-processing step in which the BOSO MILP (Mixed-Integer Liner Programming) is applied to random subproblems of small dimension, aiming to discard variables for the final problem. The usual block size is 10 variables. This process is done iteratively until convergence.
Final problem applies the BOSO MILP with all the remaining variables from the block strategy.
Figure 1 summarizes the BOSO algorithm. An example dataset with 7 features is split into training and validation sets. Green boxes represent optimal selected features for a Specific K value. For example, for K=2, the subset of features that minimizes the validation error is {X3, X6}. The problem of selecting the best subset of features of length K is formulated via mixed-integer quadratic programming (MIQP) and solved using IBM ILOG CPLEX This process is repeated for each K value until an information criterion, in this case the extended Bayesian Information Criterion (eBIC), is not further improved. Minimal eBIC is found in this example for K=2. The final model is derived from Ridge regression with only these two selected variables.
Function BOSO
has a number of parameters that can be changed:
On the other hand, there are some parameters that are identical to the ones found in the glmnet
function: lambda.min.ratio, lambda, intercept, standardize and dfmax.
Finally, some of the parameters are solver-specific:
Given a synthetic data set (see Methods section in the article), we evaluate the capacity of BOSO to extract the features that are related with the response variable. First o, we set the parameters for the generation of synthetic data:
# Set some overall simulation parameters n = 100; # Size of training set nval = n # Size of validation set p = 10; # Number of variables s = 5 # Number of nonzero coefficients beta.type = 1 # Type of coefficiente structure rho.vec = 0.35 # Variable autocorrelation level snr.vec = exp(seq(log(0.05),log(6),length=10)) # Signal-to-noise ratios nrep = 10 # Number of repetitions for a given setting seed = 0 # Random number generator seed
Benchmarked methods are defined: Forward Stepwise, Lasso, Relaxed lasso and BOSO.
# Regression functions: lasso, forward stepwise and BOSO reg.funs = list() reg.funs[["Forward stepwise"]] = function(x,y) fs(x,y,intercept=FALSE, max=min(n,p)) reg.funs[["Lasso"]] = function(x,y) lasso(x,y,intercept=FALSE,nlam=50) reg.funs[["Relaxed lasso"]] = function(x,y) lasso(x,y,intercept=FALSE, nrelax=10,nlam=50) reg.funs[["BOSO - AIC"]] <- function(x,y,xval,yval) BOSO(x,y,xval,yval, IC = "AIC", nlambda = 100, Threads = 4, timeLimit = 60, intercept = F, standardize = F, verbose = 0, warmstart=T, seed = 123456) reg.funs[["BOSO - BIC"]] <- function(x,y,xval,yval) BOSO(x,y,xval,yval, IC = "BIC", nlambda = 100, Threads = 4, timeLimit = 60, intercept = F, standardize = F, verbose = 0, warmstart=T, seed = 123456) reg.funs[["BOSO - eBIC"]] <- function(x,y,xval,yval) BOSO(x,y,xval,yval, IC = "eBIC", nlambda = 100, Threads = 4, timeLimit = 60, intercept = F, standardize = F, verbose = 0, warmstart=T, seed = 123456)
We have adapted the sim.master
function from the bestsubset library function to assess the different methods.
sim.master = function(n, p, nval, reg.funs, nrep=50, seed=NULL, verbose=FALSE, file=NULL, file.rep=5, rho=0, s=5, beta.type=1, snr=1) { this.call = match.call() if (!is.null(seed)) set.seed(seed) N = length(reg.funs) reg.names = names(reg.funs) if (is.null(reg.names)) reg.names = paste("Method",1:N) err.train = err.val = err.test = prop = risk = nzs = fpos = fneg = F1 = opt = runtime = vector(mode="list",length=N) names(err.train) = names(err.val) = names(err.test) = names(prop) = names(risk) = names(nzs) = names(fpos) = names(fneg) = names(F1) = names(opt) = names(runtime) = reg.names for (j in 1:N) { err.train[[j]] = err.val[[j]] = err.test[[j]] = prop[[j]] = risk[[j]] = nzs[[j]] = fpos[[j]] = fneg[[j]] = F1[[j]] = opt[[j]] = runtime[[j]] = matrix(NA,nrep,1) } filled = rep(FALSE,N) err.null = risk.null = sigma = rep(NA,nrep) # Loop through the repetitions for (i in 1:nrep) { if (verbose) { cat(sprintf("Simulation %i (of %i) ...\n",i,nrep)) cat(" Generating data ...\n") } # Generate x, y, xval, yval xy.obj = sim.xy(n,p,nval,rho,s,beta.type,snr) risk.null[i] = diag(t(xy.obj$beta) %*% xy.obj$Sigma %*% xy.obj$beta) err.null[i] = risk.null[i] + xy.obj$sigma^2 sigma[i] = xy.obj$sigma # Loop through the regression methods for (j in 1:N) { if (verbose) { cat(sprintf(" Applying regression method %i (of %i): %s ...\n", j,N, reg.names[j])) } tryCatch({ # Apply the regression method in hand if (grepl("BOSO", reg.names[j])){ runtime[[j]][i] = system.time({ reg.obj = reg.funs[[j]](xy.obj$x,xy.obj$y,xy.obj$xval,xy.obj$yval) })[1] } else { runtime[[j]][i] = system.time({ reg.obj = reg.funs[[j]](xy.obj$x,xy.obj$y) })[1] } # Grab the estimated coefficients, and the predicted values on the # training and validation sets betahat = as.matrix(coef(reg.obj)) m = ncol(betahat); nc = nrow(betahat) # Check for intercept if (nc == p+1) { intercept = TRUE betahat0 = betahat[1,] betahat = betahat[-1,] } else intercept = FALSE muhat.train = as.matrix(predict(reg.obj,xy.obj$x)) muhat.val = as.matrix(predict(reg.obj,xy.obj$xval)) # Populate empty matrices for our metrics, of appropriate dimension if (!filled[j]) { err.train[[j]] = err.val[[j]] = err.test[[j]] = prop[[j]] = risk[[j]] = nzs[[j]] = fpos[[j]] = fneg[[j]] = F1[[j]] = opt[[j]] = matrix(NA,nrep,m) filled[j] = TRUE # N.B. Filling with NAs is important, because the filled flag could # be false for two reasons: i) we are at the first iteration, or ii) # we've failed in all previous iters to run the regression method } # Record all of our metrics err.train[[j]][i,] = colMeans((muhat.train - xy.obj$y)^2) err.val[[j]][i,] = colMeans((muhat.val - xy.obj$yval)^2) delta = betahat - xy.obj$beta risk[[j]][i,] = diag(t(delta) %*% xy.obj$Sigma %*% delta) if (intercept) risk[[j]][i,] = risk[[j]][i,] + betahat0^2 err.test[[j]][i,] = risk[[j]][i,] + xy.obj$sigma^2 prop[[j]][i,] = 1 - err.test[[j]][i,] / err.null[i] nzs[[j]][i,] = colSums(betahat!=0) tpos = colSums((betahat!=0)*(xy.obj$beta!=0)) fpos[[j]][i,] = nzs[[j]][i,]-tpos fneg[[j]][i,] = colSums((betahat==0)*(xy.obj$beta!=0)) F1[[j]][i,] = 2*tpos/(2*tpos+fpos[[j]][i,]+fneg[[j]][i,]) opt[[j]][i,] = (err.test[[j]][i,] - err.train[[j]][i,]) / err.train[[j]][i,] }, error = function(err) { if (verbose) { cat(paste(" Oops! Something went wrong, see error message", "below; recording all metrics here as NAs ...\n")) cat(" ***** Error message *****\n") cat(sprintf(" %s\n",err$message)) cat(" *** End error message ***\n") } # N.B. No need to do anything, the metrics are already filled with NAs }) } } # Save results now (in case of an error that might occur below) out = enlist(err.train,err.val,err.test,err.null,prop,risk,risk.null,nzs,fpos, fneg,F1,opt,sigma,runtime) # if (!is.null(file)) saveRDS(out, file) # Tune according to validation error, and according to test error out = choose.tuning.params(out) # Save final results out = c(out,list(rho=rho,s=s,beta.type=beta.type,snr=snr,call=this.call)) class(out) = "sim" # if (!is.null(file)) { saveRDS(out, file); invisible(out) } # else return(out) }
sim.results <- list() for (i in 1:length(snr.vec)) { set.seed(i) sim.results[[i]] <- sim.master(n = n, p = p, nval = nval, rho=rho.vec, s=s, beta.type=beta.type, snr = snr.vec[[i]], reg.funs, nrep=nrep, seed=i, verbose=T) }
data("SimResultsVignette",package = "BOSO")
Finally, the next part of the code shows the comparison of BOSO-eBIC with some of the most widely used algorithms in the literature: Lasso, Relaxed lasso and Forward Stepwise.
plot.from.sim = function(sim.list, row=c("beta","rho","snr"), col=c("rho","beta","snr"), method.nums=NULL, method.names=NULL, what=c("error","risk","prop","F","nonzero", "fpos", "fneg"), rel.to=NULL, tuning=c("validation","oracle"), type=c("ave","med"), std=TRUE, lwd=1, pch=19, main=NULL, ylim=NULL, legend.pos=c("bottom","right","top","left","none")) { # Check for ggplot2 package if (!require("ggplot2",quietly=TRUE)) { stop("Package ggplot2 not installed (required here)!") } row = match.arg(row) col = match.arg(col) if (row==col) stop("row and col must be different") what = match.arg(what) tuning = match.arg(tuning) type = match.arg(type) legend.pos = match.arg(legend.pos) # Set the method numbers and names sim.obj = sim.list[[1]] if (is.null(method.nums)) method.nums = 1:length(sim.obj$err.test) if (is.null(method.names)) method.names = names(sim.obj$err.test[method.nums]) N = length(method.nums) # Set the base number and name if (is.null(rel.to)) { base.num = 0 base.name = ifelse(what=="error","Bayes","null model") } else { base.num = which(method.nums==rel.to) base.name = tolower(method.names[base.num]) } # Set the y-label ylab = switch(what, error=paste0("Relative test error (to ",base.name,")"), risk=paste0("Relative risk (to ",base.name,")"), prop="Proportion of variance explained", F="F classification of nonzeros", nonzero="Number of nonzeros", fpos="Number of false positive", fneg="Number of false negative") # Collect the y-variable from the file list yvec = ybar = beta.vec = rho.vec = snr.vec = c() for (i in 1:length(sim.list)) { sim.obj = sim.list[[i]] beta.vec = c(beta.vec,rep(sim.obj$beta.type,N)) rho.vec = c(rho.vec,rep(sim.obj$rho,N)) snr.vec = c(snr.vec,rep(sim.obj$snr,N)) z = sim.obj[[switch(what, error="err.test", risk="risk", prop="prop", fpos="fpos", fneg="fneg", F="F1", nonzero="nzs")]] res = tune.and.aggregate(sim.obj, z) # For prop, F and nonzero we ignore any request for a relative metric if (what=="prop" || what=="F" || what=="nonzero" || what=="fpos" || what=="fneg") { yvec = c(yvec,res[[paste0("z.",substr(tuning,1,3),".",type)]][method.nums]) ybar = c(ybar,res[[paste0("z.",substr(tuning,1,3),".", ifelse(type=="ave","std","mad"))]][method.nums]) } else { # For err and risk we respect the request for a relative metric # First build the relative metric met = res[[paste0("z.",substr(tuning,1,3))]]#[method.nums] if (base.num == 0 && what=="error") denom = sim.obj$sigma^2 else if (base.num == 0 && what=="risk") denom = sim.obj$risk.null else denom = met[[base.num]] z.rel = lapply(met, function(v) v / denom) # Now aggregate the relative metric res2 = tune.and.aggregate(sim.obj, z.rel, tune=FALSE) yvec = c(yvec,unlist(res2[[paste0("z.",type)]])[method.nums]) ybar = c(ybar,unlist(res2[[paste0("z.",ifelse(type=="ave", "std","mad"))]])[method.nums]) } } # Set the x-variable and x-label xvec = snr.vec xlab = "Signal-to-noise ratio" # Set the y-limits if (is.null(ylim)) ylim = range(yvec-ybar, yvec+ybar) # Produce the plot beta.vec = factor(beta.vec) rho.vec = factor(rho.vec) snr.vec = factor(snr.vec) levels(beta.vec) = paste("Beta-type", levels(beta.vec)) levels(rho.vec) = paste("Correlation", levels(rho.vec)) dat = data.frame(x=xvec, y=yvec, se=ybar, beta=beta.vec, rho=rho.vec, snr=snr.vec, Method=factor(rep(method.names, length=length(xvec)))) gp = ggplot(dat, aes(x=x,y=y,color=Method)) + xlab(xlab) + ylab(ylab) + coord_cartesian(ylim=ylim) + geom_line(lwd=lwd) + geom_point(pch=pch) + # facet_grid(formula(paste(row,"~",col))) + theme_bw() + theme(legend.pos=legend.pos) if (!("snr" %in% c(row,col))) { # If SNR is being plotted on the x-axis in each plot, then define special # x-axis ticks and put the x-axis on a log scale snr.breaks = round(exp(seq(from=min(log(xvec)), to=max(log(xvec)),length=4)),2) gp = gp + scale_x_continuous(trans="log", breaks=snr.breaks) } if (std) gp = gp + geom_errorbar(aes(ymin=y-se,ymax=y+se), width=0.02) if (what=="error") gp = gp + geom_line(aes(x=x, y=1+x), lwd=0.5, linetype=3, color="black") if (what=="prop") gp = gp + geom_line(aes(x=x, y=x/(1+x)), lwd=0.5, linetype=3, color="black") if (what =="nonzero") gp = gp + geom_line(aes(x=x, y=sim.obj$s), lwd=0.5, linetype=3, color="black") if (!is.null(main)) gp = gp + ggtitle(main) if (!is.null(ylim)) gp = gp + coord_cartesian(ylim=ylim) else gp return(gp + ggtitle(ylab)) }
method.nums = c(6,1,2,3) method.names = c("BOSO - eBIC","Forward stepwise","Lasso","Relaxed lasso") plot.BOSO <- list( "F" = plot.from.sim(sim.list = sim.results, what="F", rel.to=NULL, tuning="val", method.nums=method.nums, method.names=method.names), "nonzeros" = plot.from.sim(sim.list = sim.results, what="nonzero", rel.to=NULL, tuning="val", method.nums=method.nums, method.names=method.names), "fpos" = plot.from.sim(sim.list = sim.results, what="fpos", rel.to=NULL, tuning="val", method.nums=method.nums, method.names=method.names), "fneg" = plot.from.sim(sim.list = sim.results, what="fneg", rel.to=NULL, tuning="val", method.nums=method.nums, method.names=method.names)) ggarrange(plotlist = plot.BOSO, ncol = 2, nrow = 2, common.legend = T, legend = "bottom")
The following part of code is designed to compare the performance of the BOSO algorithm using different information criteria. The options available are AIC, BIC and eBIC.
method.nums = c(4, 5, 6) method.names = c("BOSO - AIC","BOSO - BIC","BOSO - eBIC") plot.BOSO <- list( "F" = plot.from.sim(sim.list = sim.results, what="F", rel.to=NULL, tuning="val", method.nums=method.nums, method.names=method.names), "nonzeros" = plot.from.sim(sim.list = sim.results, what="nonzero", rel.to=NULL, tuning="val", method.nums=method.nums, method.names=method.names), "fpos" = plot.from.sim(sim.list = sim.results, what="fpos", rel.to=NULL, tuning="val", method.nums=method.nums, method.names=method.names), "fneg" = plot.from.sim(sim.list = sim.results, what="fneg", rel.to=NULL, tuning="val", method.nums=method.nums, method.names=method.names)) ggarrange(plotlist = plot.BOSO, ncol = 2, nrow = 2, common.legend = T, legend = "bottom")
Luis V. Valcarcel, Edurne San José-Enériz, Xabier Cendoya, Ángel Rubio, Xabier Agirre, Felipe Prósper, Francisco J. Planes 'BOSO: a novel feature selection algorithm for linear regression with high-dimensional data.' submitted.
Hastie, Trevor, Robert Tibshirani, and Ryan Tibshirani. "Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons." Statistical Science 35.4 (2020): 579-592.
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.