Description Usage Arguments Value Examples
View source: R/CompWiseGibbs.r
Generate the posterior samples using MCMC procedures.
1 2 | CompWiseGibbsSimple(Y, X, beta.value, r, tau2, rho, sigma2, nu, lambda,
num.of.inner.iter, num.of.iteration, MCSE.Sigma2.Given)
|
Y |
vector of observations of length n. |
X |
design matrix of dimension n \times p. |
beta.value |
Initial values of regression coefficients, β. |
r |
Initial values of indicator variables for individual regressors. |
tau2 |
Variance in the prior distribution for regression coefficients. |
rho |
Prior probability including a variable. |
sigma2 |
Initial value of σ^2. |
nu |
The hyperparameter in the prior distribution of σ^2. |
lambda |
The hyperparameter in the prior distribution of σ^2. |
num.of.inner.iter |
The number of iterations before sampling σ^2. |
num.of.iteration |
The number of iterations to be runned for sparse group variable selection. |
MCSE.Sigma2.Given |
Prespecified value which is used to stop simulating samples when the MCSE of estimate of σ^2 less then given values. |
A list is returned with posterior samples of regression coefficients, β, variance σ^2, binary variables, γ, the number of iterations performed, and the time in second required for the run.
1 2 3 4 | ## Not run:
CompWiseGibbsSimple(Y, X, beta.value, r, tau2, rho, sigma2, nu, lambda,
num.of.inner.iter.default, num.of.iteration, MCSE.Sigma2.Given)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.