Description Usage Arguments Value Examples
View source: R/CompWiseGibbs.r
Generate the posterior samples using MCMC procedures.
1 2  | CompWiseGibbsSimple(Y, X, beta.value, r, tau2, rho, sigma2, nu, lambda,
                    num.of.inner.iter, num.of.iteration, MCSE.Sigma2.Given)
 | 
Y | 
 vector of observations of length n.  | 
X | 
 design matrix of dimension n \times p.  | 
beta.value | 
 Initial values of regression coefficients, β.  | 
r | 
 Initial values of indicator variables for individual regressors.  | 
tau2 | 
 Variance in the prior distribution for regression coefficients.  | 
rho | 
 Prior probability including a variable.  | 
sigma2 | 
 Initial value of σ^2.  | 
nu | 
 The hyperparameter in the prior distribution of σ^2.  | 
lambda | 
 The hyperparameter in the prior distribution of σ^2.  | 
num.of.inner.iter | 
 The number of iterations before sampling σ^2.  | 
num.of.iteration | 
 The number of iterations to be runned for sparse group variable selection.  | 
MCSE.Sigma2.Given | 
 Prespecified value which is used to stop simulating samples when the MCSE of estimate of σ^2 less then given values.  | 
A list is returned with posterior samples of regression coefficients, β, variance σ^2, binary variables, γ, the number of iterations performed, and the time in second required for the run.
1 2 3 4  | ## Not run: 
CompWiseGibbsSimple(Y, X, beta.value, r, tau2, rho, sigma2, nu, lambda,
 num.of.inner.iter.default, num.of.iteration, MCSE.Sigma2.Given)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.