| bsgw.crossval | R Documentation |
bsgw.crossval calculates cross-validation-based, out-of-sample log-likelihood of a bsgw model for a data set, given the supplied folds. bsgw.crossval.wrapper applies bsgw.crossval to a set of combinations of shrinkage parameters (lambda,lambdas) and produces the resulting vector of log-likelihood values as well as the specific combination of shrinkage parameters associated with the maximum log-likelihood. bsgw.generate.folds generates random partitions, while bsgw.generate.folds.eventbalanced generates random partitions with events evenly distributed across partitions. The latter feature is useful for cross-valiation of small data sets with low event rates, since it prevents over-accumulation of events in one or two partitions, and lack of events altogether in other partitions.
bsgw.generate.folds(ntot, nfold=5)
bsgw.generate.folds.eventbalanced(formula, data, nfold=5)
bsgw.crossval(data, folds, all=FALSE, print.level=1
, control=bsgw.control(), ncores=1, ...)
bsgw.crossval.wrapper(data, folds, all=FALSE, print.level=1
, control=bsgw.control(), ncores=1
, lambda.vec=exp(seq(from=log(0.01), to=log(100), length.out = 10)), lambdas.vec=NULL
, lambda2=if (is.null(lambdas.vec)) cbind(lambda=lambda.vec, lambdas=lambda.vec)
else as.matrix(expand.grid(lambda=lambda.vec, lambdas=lambdas.vec))
, plot=TRUE, ...)
ntot |
Number of observations to create partitions for. It must typically be set to |
nfold |
Number of folds or partitions to generate. |
formula |
Survival formula, used to extract the binary |
data |
Data frame used in model training and prediction. |
folds |
An integer vector of length |
all |
If |
print.level |
Verbosity of progress report. |
control |
List of control parameters, usually the output of bsgw.control. |
ncores |
Number of cores for parallel execution of cross-validation code. |
lambda.vec |
Vector of shrinkage parameters to be tested for scale-parameter coefficients. |
lambdas.vec |
Vector of shrinkage parameters to be tested for shape-parameter coefficients. |
lambda2 |
A data frame that enumerates all combinations of |
plot |
If |
... |
Other arguments to be passed to bsgw. |
Functions bsgw.generate.folds and bsgw.generate.folds.eventbalanced produce integer vectors of length ntot or nrow(data) respectively. The output of these functions can be directly passed to bsgw.crossval or bsgw.crossval.wrapper. Function bsgw.crossval returns the log-likelihood of data under the assumed bsgw model, calculated using a cross-validation scheme with the supplied fold parameter. If all=TRUE, the estimation objects for each of the nfold estimation jobs will be returned as the "estobjs" attribute of the returned value. Function bsgw.crossval.wrapper returns a list with elements lambda and lambdas, the optimal shrinkage parameters for scale and shape coefficients, respectively. Additionally, the following attributes are attached:
loglike.vec |
Vector of log-likelihood values, one for each tested combination of |
loglike.opt |
The maximum log-likelihood value from the |
lambda2 |
Data frame with columns |
estobjs |
If |
Alireza S. Mahani, Mansour T.A. Sharabiani
library("survival")
data(ovarian)
folds <- bsgw.generate.folds.eventbalanced(Surv(futime, fustat) ~ 1, ovarian, 5)
cv <- bsgw.crossval(ovarian, folds, formula=Surv(futime, fustat) ~ ecog.ps + rx
, control=bsgw.control(iter=50, nskip=10), print.level = 3)
cv2 <- bsgw.crossval.wrapper(ovarian, folds, formula=Surv(futime, fustat) ~ ecog.ps + rx
, control=bsgw.control(iter=50, nskip=10)
, print.level=3, lambda.vec=exp(seq(from=log(0.1), to=log(1), length.out = 3)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.