This is an R package wrapping the C++ code available at https://github.com/xiaohuiyan/BTM for constructing a Biterm Topic Model (BTM). This model models word-word co-occurrences patterns (e.g., biterms).
Topic modelling using biterms is particularly good for finding topics in short texts (as occurs in short survey answers or twitter data).
This R package is on CRAN, just install it with install.packages('BTM')
The Biterm Topic Model (BTM) is a word co-occurrence based topic model that learns topics by modeling word-word co-occurrences patterns (e.g., biterms)
z
. In other words, the distribution of a biterm b=(wi,wj)
is defined as: P(b) = sum_k{P(wi|z)*P(wj|z)*P(z)}
where k is the number of topics you want to extract.P(w|k)=phi
and P(z)=theta
.More detail can be referred to the following paper:
Xiaohui Yan, Jiafeng Guo, Yanyan Lan, Xueqi Cheng. A Biterm Topic Model For Short Text. WWW2013. https://github.com/xiaohuiyan/xiaohuiyan.github.io/blob/master/paper/BTM-WWW13.pdf
library(udpipe)
library(BTM)
data("brussels_reviews_anno", package = "udpipe")
## Taking only nouns of Dutch data
x <- subset(brussels_reviews_anno, language == "nl")
x <- subset(x, xpos %in% c("NN", "NNP", "NNS"))
x <- x[, c("doc_id", "lemma")]
## Building the model
set.seed(321)
model <- BTM(x, k = 3, beta = 0.01, iter = 1000, trace = 100)
## Inspect the model - topic frequency + conditional term probabilities
model$theta
[1] 0.3406998 0.2413721 0.4179281
topicterms <- terms(model, top_n = 10)
topicterms
[[1]]
token probability
1 appartement 0.06168297
2 brussel 0.04057012
3 kamer 0.02372442
4 centrum 0.01550855
5 locatie 0.01547671
6 stad 0.01229227
7 buurt 0.01181460
8 verblijf 0.01155985
9 huis 0.01111402
10 dag 0.01041345
[[2]]
token probability
1 appartement 0.05687312
2 brussel 0.01888307
3 buurt 0.01883812
4 kamer 0.01465696
5 verblijf 0.01339812
6 badkamer 0.01285862
7 slaapkamer 0.01276870
8 dag 0.01213928
9 bed 0.01195945
10 raam 0.01164474
[[3]]
token probability
1 appartement 0.061804812
2 brussel 0.035873377
3 centrum 0.022193831
4 huis 0.020091282
5 buurt 0.019935537
6 verblijf 0.018611710
7 aanrader 0.014614272
8 kamer 0.011447470
9 locatie 0.010902365
10 keuken 0.009448751
scores <- predict(model, newdata = x)
Make a specific topic called the background
# If you set background to TRUE
# The first topic is set to a background topic that equals to the empirical word distribution.
# This can be used to filter out common words.
set.seed(321)
model <- BTM(x, k = 5, beta = 0.01, background = TRUE, iter = 1000, trace = 100)
topicterms <- terms(model, top_n = 5)
topicterms
library(textplot)
library(ggraph)
library(concaveman)
plot(model)
An interesting use case of this package is to
This can be done by providing your own set of biterms to cluster upon.
Example clustering cooccurrences of nouns/adjectives
library(data.table)
library(udpipe)
## Annotate text with parts of speech tags
data("brussels_reviews", package = "udpipe")
anno <- subset(brussels_reviews, language %in% "nl")
anno <- data.frame(doc_id = anno$id, text = anno$feedback, stringsAsFactors = FALSE)
anno <- udpipe(anno, "dutch", trace = 10)
## Get cooccurrences of nouns / adjectives and proper nouns
biterms <- as.data.table(anno)
biterms <- biterms[, cooccurrence(x = lemma,
relevant = upos %in% c("NOUN", "PROPN", "ADJ"),
skipgram = 2),
by = list(doc_id)]
## Build the model
set.seed(123456)
x <- subset(anno, upos %in% c("NOUN", "PROPN", "ADJ"))
x <- x[, c("doc_id", "lemma")]
model <- BTM(x, k = 5, beta = 0.01, iter = 2000, background = TRUE,
biterms = biterms, trace = 100)
topicterms <- terms(model, top_n = 5)
topicterms
Example clustering dependency relationships
library(udpipe)
library(tm)
library(data.table)
data("brussels_reviews", package = "udpipe")
exclude <- stopwords("nl")
## Do annotation on Dutch text
anno <- subset(brussels_reviews, language %in% "nl")
anno <- data.frame(doc_id = anno$id, text = anno$feedback, stringsAsFactors = FALSE)
anno <- udpipe(anno, "dutch", trace = 10)
anno <- setDT(anno)
anno <- merge(anno, anno,
by.x = c("doc_id", "paragraph_id", "sentence_id", "head_token_id"),
by.y = c("doc_id", "paragraph_id", "sentence_id", "token_id"),
all.x = TRUE, all.y = FALSE, suffixes = c("", "_parent"), sort = FALSE)
## Specify a set of relationships you are interested in (e.g. objects of a verb)
anno$relevant <- anno$dep_rel %in% c("obj") & !is.na(anno$lemma_parent)
biterms <- subset(anno, relevant == TRUE)
biterms <- data.frame(doc_id = biterms$doc_id,
term1 = biterms$lemma,
term2 = biterms$lemma_parent,
cooc = 1,
stringsAsFactors = FALSE)
biterms <- subset(biterms, !term1 %in% exclude & !term2 %in% exclude)
## Put in x only terms whch were used in the biterms object such that frequency stats of terms can be computed in BTM
anno <- anno[, keep := relevant | (token_id %in% head_token_id[relevant == TRUE]), by = list(doc_id, paragraph_id, sentence_id)]
x <- subset(anno, keep == TRUE, select = c("doc_id", "lemma"))
x <- subset(x, !lemma %in% exclude)
## Build the topic model
model <- BTM(data = x,
biterms = biterms,
k = 6, iter = 2000, background = FALSE, trace = 100)
topicterms <- terms(model, top_n = 5)
topicterms
Need support in text mining? Contact BNOSAC: http://www.bnosac.be
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.