View source: R/predict.pbart.R
predict.pbart | R Documentation |
BART is a Bayesian approach to nonparametric function estimation and inference using a sum of trees.
For a binary response y, probit BART models y and x using
P(Y=1|x)=Φ[f(x)],
where Φ is the CDF of the standard normal distribution and f is a sum of Bayesian regression
trees function.
This function uses S3 method for the class pbart
and is inherited from the CRAN R package 'BART'.
## S3 method for class 'pbart' predict(object, newdata, mc.cores = 1, openmp = (mc.cores.openmp() > 0), ...)
object |
An object of class |
newdata |
A matrix of predictors with rows corresponding to new observations. |
mc.cores |
The number of threads to utilize. |
openmp |
A Boolean argument dictating whether OpenMP is utilized for parallel processing. This depends on
whether OpenMP is available on your system which, by default, is verified with the function |
... |
Other arguments passed on to the function |
Returns a matrix of prediction for newdata
, whose rows correspond to draws and columns correspond to
observations.
Chuji Luo: cjluo@ufl.edu and Michael J. Daniels: daniels@ufl.edu.
Chipman, H. A., George, E. I. and McCulloch, R. E. (2010). "BART: Bayesian additive regression trees." Ann. Appl. Stat. 4 266–298.
Linero, A. R. (2018). "Bayesian regression trees for high-dimensional prediction and variable selection." J. Amer. Statist. Assoc. 113 626–636.
Luo, C. and Daniels, M. J. (2021) "Variable Selection Using Bayesian Additive Regression Trees." arXiv preprint arXiv:2112.13998.
Rockova V, Saha E (2019). “On theory for BART.” In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2839–2848). PMLR.
Sparapani, R., Spanbauer, C. and McCulloch, R. (2021). "Nonparametric machine learning and efficient computation with bayesian additive regression trees: the BART R package." J. Stat. Softw. 97 1–66.
pwbart
and pbart
.
## simulate data (Scenario B.M.1. in Luo and Daniels (2021)) set.seed(123) data = mixone(100, 10, 1, TRUE) ## run pbart() function res = pbart(data$X, data$Y, ntree=10, nskip=100, ndpost=100) ## test predict.pbart() function newdata = mixone(5, 10, 1, TRUE)$X pred = predict(res, newdata)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.