EM_BrainMap | R Documentation |
EM Algorithms for Bayesian brain maps
EM_BrainMap.spatial(
prior_mean,
prior_var,
meshes,
BOLD,
theta0,
C_diag,
H,
Hinv,
maxiter = 100,
usePar = FALSE,
epsilon = 0.001,
reduce_dim = TRUE,
verbose = FALSE
)
EM_BrainMap.independent(
prior_mean,
prior_var,
BOLD,
theta0,
C_diag,
H,
Hinv,
maxiter = 100,
epsilon = 0.001,
reduce_dim = FALSE,
usePar = FALSE,
verbose
)
prior_mean |
( |
prior_var |
( |
meshes |
|
BOLD |
( |
theta0 |
(list) initial guess at parameter values: A ( |
C_diag |
( |
H , Hinv |
For dimension reduction
of the spatial Bayesian brain map model, which assumes that all networks
have the same smoothness parameter, |
maxiter |
Maximum number of EM iterations. Default: 100. |
usePar |
Parallelize the computation? Default: |
epsilon |
Smallest proportion change between iterations. Default: 0.001. |
reduce_dim |
Reduce the temporal dimension of the data using PCA?
Default: |
verbose |
If |
EM_BrainMap.spatial
implements the expectation-maximization
(EM) algorithm described in Mejia et al. (2019+) for estimating the
subject-level networks and unknown parameters in the Bayesian brain map
model with spatial priors on subject effects.
In both models, if original fMRI timeseries has covariance
\sigma^2 I_T
, the prewhitened timeseries achieved by premultiplying
by (QxT
) matrix H
from PCA has diagonal covariance
\sigma^2HH'
, so C_diag is diag(HH')
.
A list: theta (list of final parameter estimates), subjNet_mean
(estimates of subject-level networks), subjNet_var (variance of subject-level networks,
for non-spatial model) or subjNet_cov (covariance matrix of subject-level networks,
for spatial model – note that only diagonal and values for neighbors are
computed), and success (flag indicating convergence (TRUE
) or not
(FALSE
))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.