.lambda_MH_cp | R Documentation |
Lambda MH step, proposal from conditional conjugate posterior
.lambda_MH_cp(
df_hist,
df_curr,
Y,
I,
X,
s,
beta,
beta_0 = NULL,
mu,
sigma2,
lambda,
lambda_0,
tau,
bp,
bp_0 = 0,
J,
a_lam = 0.01,
b_lam = 0.01,
lambda_move = 0,
lambda_count = 0,
alpha = 0.3
)
df_hist |
data.frame from dataframe_fun() |
df_curr |
data.frame from dataframe_fun() |
Y |
data |
I |
censoring indicator |
X |
design matrix |
s |
split point locations, J + 2 |
beta |
parameter value for covariates |
beta_0 |
parameter value for historical covariates |
mu |
prior mean for baseline hazard |
sigma2 |
prior variance hyperparameter for baseline hazard |
lambda |
baseline hazard |
lambda_0 |
historical baseline hazard |
tau |
borrowing parameter |
bp |
number of covariates, length(beta) |
bp_0 |
number of covariates, length(beta_0) |
J |
number of split points |
a_lam |
lambda hyperparameter |
b_lam |
lambda hyperparameter |
lambda_move |
number of accepted lambda moves |
lambda_count |
total number of lambda moves |
alpha |
power parameter |
list of updated (if accepted) lambda and data.frames, as well as the number of accepted moves
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.