Man pages for BayesMallows
Bayesian Preference Learning with the Mallows Rank Model

assess_convergenceTrace Plots from Metropolis-Hastings Algorithm
assign_clusterAssign Assessors to Clusters
asymptotic_partition_functionAsymptotic Approximation of Partition Function
BayesMallows-packageBayesMallows: Bayesian Preference Learning with the Mallows...
beach_preferencesBeach preferences
bernoulli_dataSimulated intransitive pairwise preferences
burninSee the burnin
burnin-setSet the burnin
cluster_dataSimulated clustering data
compute_consensusCompute Consensus Ranking
compute_exact_partition_functionCompute exact partition function
compute_expected_distanceExpected value of metrics under a Mallows rank model
compute_mallowsPreference Learning with the Mallows Rank Model
compute_mallows_mixturesCompute Mixtures of Mallows Models
compute_mallows_sequentiallyEstimate the Bayesian Mallows Model Sequentially
compute_observation_frequencyFrequency distribution of the ranking sequences
compute_posterior_intervalsCompute Posterior Intervals
compute_rank_distanceDistance between a set of rankings and a given rank sequence
create_rankingConvert between ranking and ordering.
estimate_partition_functionEstimate Partition Function
get_acceptance_ratiosGet Acceptance Ratios
get_cardinalitiesGet cardinalities for each distance
get_mallows_loglikLikelihood and log-likelihood evaluation for a Mallows...
get_transitive_closureGet transitive closure
heat_plotHeat plot of posterior probabilities
plot.BayesMallowsPlot Posterior Distributions
plot_elbowPlot Within-Cluster Sum of Distances
plot.SMCMallowsPlot SMC Posterior Distributions
plot_top_kPlot Top-k Rankings with Pairwise Preferences
potato_true_rankingTrue ranking of the weights of 20 potatoes.
potato_visualPotato weights assessed visually
potato_weighingPotato weights assessed by hand
predict_top_kPredict Top-k Rankings with Pairwise Preferences
print.BayesMallowsPrint Method for BayesMallows Objects
rmallowsSample from the Mallows distribution.
sample_mallowsRandom Samples from the Mallows Rank Model
sample_priorSample from prior distribution
set_compute_optionsSpecify options for computation
set_initial_valuesSet initial values of scale parameter and modal ranking
set_model_optionsSet options for Bayesian Mallows model
set_priorsSet prior parameters for Bayesian Mallows model
set_progress_reportSet progress report options for MCMC algorithm
set_smc_optionsSet SMC compute options
setup_rank_dataSetup rank data
sushi_rankingsSushi rankings
update_mallowsUpdate a Bayesian Mallows model with new users
BayesMallows documentation built on Sept. 11, 2024, 5:31 p.m.