View source: R/BayesMultMeta.R
split_rank_hatR | R Documentation |
The function computes the split-\hat{R} estimate based on the rank normalization.
split_rank_hatR(MC)
MC |
An N \times M matrix with N draws in each of M constructed Markov chains. |
a value with the the split-\hat{R} estimate based on the rank normalization
dataREM<-mvmeta::hyp # Observation matrix X X<-t(cbind(dataREM$sbp,dataREM$dbp)) p<-nrow(X) # model dimension n<-ncol(X) # sample size # Matrix U U<-matrix(0,n*p,n*p) for (i_n in 1:n) { Use<-diag(c(dataREM$sbp_se[i_n],dataREM$dbp_se[i_n])) Corr_mat<-matrix(c(1,dataREM$rho[i_n],dataREM$rho[i_n],1),p,p) U[(p*(i_n-1)+1):(p*i_n),(p*(i_n-1)+1):(p*i_n)]<- Use%*%Corr_mat%*%Use } # Generating M Markov chains for mu_1 M<-4 # number of chains MC <-NULL for (i in 1:M) { chain <- BayesMultMeta(X, U, 1e2, burn_in = 1e2, likelihood = "t", prior="jeffrey", algorithm_version = "mu",d=3) MC<- cbind(MC,chain$mu[1,]) } split_rank_hatR(MC)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.