View source: R/B2_LocalModelCompile.R
LocalModelCompile | R Documentation |
Compile the local models
LocalModelCompile(data, dag = NULL, node.class = NULL)
data |
a |
dag |
|
node.class |
|
This function compiles the local models, including the conditional
probability tables for discrete variables, and linear predictor potentials
for continuous variables. The qtlnet and qtl package need to be installed if data is
a qtlnet
object.
pots
a list
of discrete potentials (conditional probability tables)
for each discrete variable.
bags
a list
of sets of continuous potentials (lppotentials), each set for a
continuous variables.
Han Yu
Cowell, R. G. (2005). Local propagation in conditional Gaussian Bayesian networks.
Journal of Machine Learning Research, 6(Sep), 1517-1550.
Yu H, Moharil J, Blair RH (2020). BayesNetBP: An R Package for Probabilistic Reasoning in Bayesian
Networks. Journal of Statistical Software, 94(3), 1-31. <doi:10.18637/jss.v094.i03>.
ElimTreeInitialize
data(liver) models <- LocalModelCompile(data=liver$data, dag=liver$dag, node.class=liver$node.class)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.