porsBFr | R Documentation |
This function computes the probability to achieve replication success based on the replication Bayes factor. The replication Bayes factor is assumed to be oriented so that values below one indicate replication success, whereas values above one indicate evidence for the null hypothesis.
porsBFr(level, dprior, sr, paradox = TRUE)
level |
Bayes factor level below which replication success is achieved |
dprior |
Design prior object |
sr |
Replication standard error |
paradox |
Should the probability of replication success be computed
allowing for the replication paradox (replication success when the effect
estimates from original and replication study have a different sign)?
Defaults to |
The probability to achieve replication success
Samuel Pawel
Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.48550/arXiv.2211.02552")}
Verhagen, J. and Wagenmakers, E. J. (2014). Bayesian tests to quantify the result of a replication attempt. Journal of Experimental Psychology: General, 145:1457-1475. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1037/a0036731")}
Ly, A., Etz, A., Marsman, M., & Wagenmakers, E.-J. (2018). Replication Bayes factors from evidence updating. Behavior Research Methods, 51(6), 2498-2508. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3758/s13428-018-1092-x")}
## specify design prior
to1 <- 0.2
so1 <- 0.05
dprior <- designPrior(to = to1, so = so1, tau = 0.03)
porsBFr(level = 1/10, dprior = dprior, sr = c(0.05, 0.04))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.