activations | Identify field activations |
activations.classical | Identification of areas of activation in a General Linear... |
activations.posterior | Identify activations using joint posterior probabilities |
AICc | Corrected AIC |
aic_Param | aic |
ar_order_Param | ar_order |
ar_smooth_Param | ar_smooth |
BayesfMRI-package | BayesfMRI: Spatial Bayesian Methods for Task Functional MRI... |
BayesGLM | BayesGLM for CIFTI |
BayesGLM2 | Group-level Bayesian GLM |
BayesGLM_argChecks | Bayes GLM arg checks |
BayesGLM_format_cifti | Format fit_bayesglm results into '"xifti"' objects |
BayesGLM_format_design | Format design |
BayesGLM_format_nuisance | Format nuisance |
BayesGLM_format_scrub | Format scrub |
BayesGLM_is_valid_one_design | Is a valid design? |
BayesGLM_is_valid_one_nuisance | Is a valid nuisance? |
BayesGLM_is_valid_one_scrub | Is a valid scrub? |
BayesGLM_session_names | Get 'session_names' for GLM |
Bayes_Param | Bayes |
beta.posterior.thetasamp | Beta posterior theta sampling |
BOLD_Param_BayesGLM | BOLD |
brainstructures_Param_BayesGLM | brainstructures |
buffer_Param | buffer |
cbind2 | 'cbind' if first argument might be 'NULL' |
check_INLA | Check INLA and PARDISO |
cholQsample | Sample from the multivariate normal distribution with... |
Connectome_Workbench_Description | Connectome Workbench |
contrasts_Param | contrasts |
create_listRcpp | Function to prepare objects for use in Rcpp functions |
design_Param_BayesGLM | design |
dgCMatrix_cols_to_zero | Set column values to zero for sparse matrix |
do_QC | Mask out invalid data |
dot-findTheta | Perform the EM algorithm of the Bayesian GLM fitting |
dot-getSqrtInvCpp | Get the prewhitening matrix for a single data location |
dot-initialKP | Find the initial values of kappa2 and phi |
dot-logDetQt | Find the log of the determinant of Q_tilde |
ELL | Expected log-likelihood function |
EM_Param | EM |
emTol_Param | emTol |
extract_estimates | Extract Estimates of Activation |
faces_Param | faces |
field_names_Param | field_names |
fit_bayesglm | fit_bayesglm |
F.logwt | F logwt |
galerkin_db | Create FEM matrices |
get_nV | Get number of locations for various masks |
get_posterior_densities | Extracts posterior density estimates for hyperparameters |
get_posterior_densities2 | Extracts posterior density estimates for hyperparameters for... |
GLM_classical | Classical GLM |
GLM_compare | Classical GLM for multiple models |
GLMEM_fixptseparate | Fixed point function for the joint BayesGLM EM update... |
GLMEM_objfn | Objective function for the BayesGLM EM algorithm |
GLM_est_resid_var_pw | Standardize data variance, and prewhiten if applicable |
hpf_Param_BayesGLM | hpf |
init_fixpt | The fix point function for the initialization of kappa2 and... |
init_objfn | Objective function for the initialization of kappa2 and phi |
INLA_deps | Import INLA dependencies |
INLA_Description | INLA |
INLA_Latent_Fields_Limit_Description | INLA Latent Fields |
intersect_mask | Intersection mask for BayesGLM or activations result |
is_matrix_or_df | Is a matrix or data.frame? |
kappa_init_fn | Function to optimize over kappa2 |
log_kappa_tau | Make 'log_kappa' and 'log_tau' |
make_A_mat | Make A matrix |
make_A_mat_rs | Make A matrix with resampling framework |
make_data_list | Make data list for 'estimate_model' |
make_mesh | Make Mesh |
make_Q | Make the full SPDE precision based on theta, the spde, and... |
make_replicates | Make replicates |
make_sqrtInv_all | Make 'sqrtInv_all' |
mask_Param_vertices | mask: vertices |
max_threads_Param | max_threads |
mean_var_Tol_Param | mean and variance tolerance |
mesh_Param_either | mesh: either |
mesh_Param_inla | mesh: INLA only |
nbhd_order_Param | nbhd_order |
neg_kappa_fn | The negative of the objective function for kappa |
neg_kappa_fn2 | The negative of the objective function for kappa without... |
neg_kappa_fn3 | Streamlined negative objective function for kappa2 using... |
neg_kappa_fn4 | Streamlined negative objective function for kappa2 using... |
n_threads_Param | n_threads |
nuisance_Param_BayesGLM | nuisance |
plot.act_BGLM | S3 method: use 'view_xifti' to plot a '"act_BGLM"' object |
plot.BGLM | S3 method: use 'view_xifti' to plot a '"BGLM"' object |
plot.BGLM2 | S3 method: use 'view_xifti' to plot a '"BGLM2"' object |
plot.prev_BGLM | S3 method: use 'view_xifti' to plot a '"prev_BGLM"' object |
prep_kappa2_optim | Find values for coefficients used in objective function for... |
prevalence | Activations prevalence. |
pw_estimate | Estimate residual autocorrelation for prewhitening |
pw_smooth | Smooth AR coefficients and white noise variance |
Q_prime | Q prime |
qsample | Sample from a multivariate normal with mean and precision |
resamp_res_Param_BayesGLM | resamp_res |
retro_mask_act | Retroactively mask activations |
retro_mask_fit_bglm | Retroactively mask locations from fit_bglm result. |
retro_mask_mesh | Retroactively mask locations from mesh. |
return_INLA_Param | return_INLA |
s2m | Sequential 2-means variable selection |
s2m_B | Sequential 2-means on array B |
scale_BOLD | Scale the BOLD timeseries |
scale_BOLD_Param | scale_BOLD |
scale_design_mat | Scale the design matrix |
scrub_Param_BayesGLM | scrub |
seed_Param | seed |
session_names_Param | session_names |
sparse_and_PW | Organize data for Bayesian GLM |
SPDE_from_vertex | SPDE from mesh model |
SPDE_from_voxel | SPDE from voxel model |
spde_Q_phi | Calculate the SPDE covariance |
summary.act_BGLM | Summarize a '"act_BGLM"' object |
summary.act_fit_bglm | Summarize a '"act_fit_bglm"' object |
summary.BGLM | Summarize a '"BGLM"' object |
summary.BGLM2 | Summarize a '"BGLM2"' object |
summary.fit_bglm | Summarize a '"fit_bglm"' object |
summary.fit_bglm2 | Summarize a '"fit_bglm2"' object |
summary.prev_BGLM | Summarize a '"prev_BGLM"' object |
summary.prev_fit_bglm | Summarize a '"prev_fit_bglm"' object |
surfaces_Param_BayesGLM | surfaces |
trim_INLA_model_obj | Trim INLA object |
trim_INLA_Param | trim_INLA |
TR_Param_BayesGLM | TR |
TrQbb | Trace of Q beta' beta |
TrQEww | Trace approximation function |
TrSigB | Hutchinson estimator of the trace |
unmask_Mdat2In | Unmask data |
validate_spatial | Validate 'spatial' |
verbose_Param | verbose |
vertex_areas | Surface area of each vertex |
vertices_Param | vertices |
vol2spde | Construct a triangular mesh from a 3D volumetric mask |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.