Nothing
#' Connectome Workbench
#'
#' @section Connectome Workbench Requirement:
#'
#' This function uses a system wrapper for the 'wb_command' executable. The
#' user must first download and install the Connectome Workbench, available
#' from https://www.humanconnectome.org/software/get-connectome-workbench .
#'
#' @name Connectome_Workbench_Description
NULL
#' INLA
#'
#' @section INLA Requirement:
#' This function requires the \code{INLA} package, which is not a CRAN package.
#' See \url{https://www.r-inla.org/download-install} for easy installation instructions.
#'
#' @name INLA_Description
NULL
#' INLA Latent Fields
#'
#' @section INLA Latent Fields Limit:
#' INLA computation times increase greatly when the number of columns in the
#' design matrix exceeds five: when there are more than five tasks, or more
#' than three tasks each with a temporal derivative modeled as a field. In
#' cases like the latter, we recommend modeling the temporal derivatives as
#' nuisance signals using the option \code{dHRF_as="nuisance"}, rather than
#' modeling the temporal derivatives as fields.
#'
#' @name INLA_Latent_Fields_Limit_Description
NULL
#' aic
#'
#' @param aic (For prewhitening) Use the Akaike information criterion (AIC) to
#' select AR model orders between \code{0} and \code{ar_order}? Default:
#' \code{FALSE}.
#'
#' @name aic_Param
NULL
#' ar_order
#'
#' @param ar_order (For prewhitening) The order of the autoregressive (AR) model
#' to use for prewhitening. If \code{0}, do not prewhiten. Default: \code{6}.
#'
#' For multi-session modeling, note that a single AR model is used; its
#' coefficients will be the average estimate from each session.
#'
#' @name ar_order_Param
NULL
#' ar_smooth
#'
#' @param ar_smooth (For prewhitening) The FWHM parameter for spatially
#' smoothing the coefficient estimates for the AR model to use for
#' prewhitening. Recall that
#' \eqn{\sigma = \frac{FWHM}{2*sqrt(2*log(2)}}. Set to \code{0} to not smooth
#' the estimates. Default: \code{5}.
#'
# [TO DO] vol vs surf?
#' @name ar_smooth_Param
NULL
#' Bayes
#'
#' @param Bayes Perform spatial Bayesian modeling? Default: \code{TRUE}. If
#' \code{FALSE}, only perform classical (massive univariate) modeling. (The classical GLM
#' result is always returned, whether \code{Bayes} is \code{TRUE} or \code{FALSE}.)
#'
#' @name Bayes_Param
NULL
#' buffer
#'
#' @param buffer For volumetric model. The number of extra voxel layers around
#' the bounding box. Set to \code{NULL} for no buffer. (We recommend not
#' changing \code{buffer} unless you know what you're doing. Instead, to reduce
#' the number of boundary voxels, adjust \code{nbhd_order}).
#'
#' @name buffer_Param
NULL
#' contrasts
#'
#' @param contrasts List of contrast vectors to be passed to \code{inla::inla}.
#'
#' @name contrasts_Param
NULL
#' EM
#'
#' @param EM (logical) Should the EM implementation of the Bayesian GLM be used?
#' Default: \code{FALSE}. This method is still in development.
#'
#' @name EM_Param
NULL
#' emTol
#'
#' @param emTol The stopping tolerance for the EM algorithm. Default:
#' \code{1e-3}.
#'
#' @name emTol_Param
NULL
#' faces
#'
#' @param faces An \eqn{F \times 3} matrix, where each row contains the vertex
#' indices for a given triangular face in the mesh. \eqn{F} is the number of
#' faces in the mesh.
#'
#' @name faces_Param
NULL
#' mask: vertices
#'
#' @param mask A length \eqn{V} logical vector indicating if each vertex is
#' within the input mask.
#'
#' @name mask_Param_vertices
NULL
#' mean and variance tolerance
#'
#' @param meanTol,varTol Tolerance for mean and variance of each data location.
#' Locations which do not meet these thresholds are masked out of the analysis.
#' Default: \code{1e-6} for both.
#'
#' @name mean_var_Tol_Param
NULL
#' mesh: INLA only
#'
#' @param mesh An \code{"inla.mesh"} object (see \code{\link{make_mesh}} for
#' surface data).
#'
#' @name mesh_Param_inla
NULL
#' mesh: either
#'
#' @param mesh An \code{"inla.mesh"} object (see \code{\link{make_mesh}} for
#' surface data)
# or \code{"BayesfMRI.spde"} object (see \code{\link{make_spde_vol}} for subcortical data).
#'
#' @name mesh_Param_either
NULL
#' max_threads
#'
#' @param max_threads The maximum number of threads to use in the inla-program
#' for model estimation. \code{0} (default) will use the maximum number of
#' threads allowed by the system.
#'
#' @name max_threads_Param
NULL
#' nbhd_order
#'
#' @param nbhd_order For volumetric model. What order neighborhood around data
#' locations to keep? \code{0} for no neighbors, \code{1} for 1st-order
#' neighbors, \code{2} for 1st- and 2nd-order neighbors, etc. Smaller values
#' will provide greater computational efficiency at the cost of higher variance
#' around the edge of the data.
#'
#' @name nbhd_order_Param
#'
NULL
#' n_threads
#'
#' @param n_threads The maximum number of threads to use for parallel
#' computations: prewhitening parameter estimation, and the inla-program model
#' estimation. Default: \code{4}. Note that parallel prewhitening requires the
#' \code{parallel} package.
#'
#' @name n_threads_Param
NULL
#' return_INLA
#'
#' @param return_INLA Return the INLA model object? (It can be large.) Use
#' \code{"trimmed"} (default) returns the results sufficient for
#' \code{\link{activations}} and \code{\link{BayesGLM2}}; \code{"minimal"}
#' returns enough for \code{\link{BayesGLM2}} but not
#' \code{\link{activations}}; \code{"full"} returns the full \code{inla}
#' output.
#'
#' @name return_INLA_Param
NULL
#' scale_BOLD
#'
#' @param scale_BOLD Controls scaling the BOLD response at each location.
#' \describe{
#' \item{"mean":}{ Scale the data to percent local signal change.}
#' \item{"sd":}{ Scale the data by local standard deviation.}
#' \item{"none":}{ Center the data but do not scale it.}
#' }
#'
#' @name scale_BOLD_Param
NULL
#' seed
#'
#' @param seed Random seed (optional). Default: \code{NULL}.
#'
#' @name seed_Param
NULL
#' session_names
#'
#' @param session_names The names of the task-fMRI \code{BOLD} sessions, for
#' multi-session analysis. If not provided here, will be inferred from
#' \code{names(BOLD)}, inferred from \code{names(design)}, or generated
#' automatically, in that order.
#'
#' @name session_names_Param
NULL
#' field_names
#'
#' @param field_names (Optional) Names of fields represented in design matrix.
#'
#' @name field_names_Param
NULL
#' trim_INLA
#'
#' @param trim_INLA (logical) should the \code{INLA_model_obj} within the
#' result be trimmed to only what is necessary to use \code{activations}?
#' Default: \code{TRUE}.
#'
#' @name trim_INLA_Param
NULL
#' verbose
#'
#' @param verbose \code{1} (default) to print occasional updates during model
#' computation; \code{2} for occasional updates as well as running INLA in
#' verbose mode (if \code{Bayes}), or \code{0} for no printed updates.
#'
#' @name verbose_Param
NULL
#' vertices
#'
#' @param vertices A \eqn{V \times 3} matrix, where each row contains the Euclidean
#' coordinates at which a given vertex in the mesh is located. \eqn{V} is the
#' number of vertices in the mesh
#'
#' @name vertices_Param
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.