Description Usage Arguments Details Value Author(s) References Examples
Blockwise sampling from the conditional distribution of a permuted column/row for simulating the posterior distribution for the concentration matrix specifying a Gaussian Graphical Model
1 2  | blockGLasso(X, iterations = 2000, burnIn = 1000, lambdaPriora = 1,
  lambdaPriorb = 1/10, verbose = TRUE)
 | 
X | 
 Data matrix  | 
iterations | 
 Length of Markov chain after burn-in  | 
burnIn | 
 Number of burn-in iterations  | 
lambdaPriora | 
 Shrinkage hyperparameter (lambda) gamma distribution shape  | 
lambdaPriorb | 
 Shrinkage hyperparameter (lambda) gamma distribution scale  | 
verbose | 
 logical; if TRUE return MCMC progress  | 
Implements the block Gibbs sampler for the Bayesian graphical lasso introduced in Wang (2012). Samples from the conditional distribution of a permuted column/row for simulating the posterior distribution for the concentration matrix specifying a Gaussian Graphical Model
Sigma | 
 List of covariance matrices from the Markov chain  | 
Omega | 
 List of concentration matrices from the Markov chains  | 
Lambda | 
 Vector of simulated lambda parameters  | 
Patrick Trainor (University of Louisville)
Hao Wang
Wang, H. (2012). Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis, 7(4). <doi:10.1214/12-BA729> .
1 2 3 4 5 6 7 8 9 10 11 12  | # Generate true covariance matrix:
s<-.9**toeplitz(0:9)
# Generate multivariate normal distribution:
set.seed(5)
x<-MASS::mvrnorm(n=100,mu=rep(0,10),Sigma=s)
blockGLasso(X=x)
# Same example with short MCMC chain:
s<-.9**toeplitz(0:9)
set.seed(6)
x<-MASS::mvrnorm(n=100,mu=rep(0,10),Sigma=s)
blockGLasso(X=x,iterations=100,burnIn=100)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.