Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(BayesianPlatformDesignTimeTrend)
## ----eval=FALSE---------------------------------------------------------------
#
# ntrials = 1000 # Number of trial replicates
# ns = seq(120, 600, 120) # Sequence of total number of accrued patients at each interim analysis
# null.reponse.prob = 0.4
# alt.response.prob = 0.6
#
# # We investigate the type I error rate for different time trend strength
# null.scenario = matrix(
# c(
# null.reponse.prob,
# null.reponse.prob,
# null.reponse.prob,
# null.reponse.prob
# ),
# nrow = 1,
# ncol = 4,
# byrow = T
# )
# # alt.scenario = matrix(c(null.reponse.prob,null.reponse.prob,null.reponse.prob,null.reponse.prob,
# # null.reponse.prob,alt.response.prob,null.reponse.prob,null.reponse.prob,
# # null.reponse.prob,alt.response.prob,alt.response.prob,null.reponse.prob,
# # null.reponse.prob,alt.response.prob,alt.response.prob,alt.response.prob), nrow=3, ncol = 4,byrow=T)
# model = "tlr" #logistic model
# max.ar = 0.75 #limit the allocation ratio for the control group (1-max.ar < r_control < max.ar)
# #------------Select the data generation randomisation methods-------
# rand.type = "Urn" # Urn design
# max.deviation = 3 # The recommended value for the tuning parameter in the Urn design
#
# # Require multiple cores for parallel running
# cl = 2
#
# # Set the model we want to use and the time trend effect for each model used.
# # Here the main model will be used twice for two different strength of time trend c(0,0,0,0) and c(1,1,1,1) to investigate how time trend affect the evaluation metrics in BAR setting.
# # Then the main + stage_continuous model which is the treatment effect + stage effect model will be applied for strength equal c(1,1,1,1) to investigate how the main + stage effect model improve the evaluation metrics.
# reg.inf = "main"
# trend.effect = c(0,0,0,0)
#
# result = {
#
# }
# OPC = {
#
# }
# K = dim(null.scenario)[2]
# cutoffindex = 1
# trendindex = 1
#
# cutoff.information=demo_Cutoffscreening (
# ntrials = ntrials,
# # Number of trial replicates
# trial.fun = simulatetrial,
# # Call the main function
# grid.inf = list(start = c(0.9, 0.95, 1), extendlength =
# 20),
# # Set up the cutoff grid for screening. The start grid has three elements. The extended grid has fifteen cutoff value under investigation
# input.info = list(
# response.probs = null.scenario[1,],
# #The scenario vector in this round
# ns = ns,
# # Sequence of total number of accrued patients at each interim analysis
# max.ar = max.ar,
# #limit the allocation ratio for the control group (1-max.ar < r_control < max.ar)
# rand.type = rand.type,
# # Which randomisation methods in data generation.
# max.deviation = max.deviation,
# # The recommended value for the tuning parameter in the Urn design
# model.inf = list(
# model = model,
# #Use which model?
# ibb.inf = list(
# #independent beta-binomial model which can be used only for no time trend simulation
# pi.star = 0.5,
# # beta prior mean
# pess = 2,
# # beta prior effective sample size
# betabinomialmodel = ibetabinomial.post # beta-binomial model for posterior estimation
# ),
# tlr.inf = list(
# beta0_prior_mu = 0,
# # Stan logistic model t prior location
# beta1_prior_mu = 0,
# # Stan logistic model t prior location
# beta0_prior_sigma = 2.5,
# # Stan logistic model t prior sigma
# beta1_prior_sigma = 2.5,
# # Stan logistic model t prior sigma
# beta0_df = 7,
# # Stan logistic model t prior degree of freedom
# beta1_df = 7,
# # Stan logistic model t prior degree of freedom
# reg.inf = reg.inf,
# # The model we want to use
# variable.inf = "Fixeffect" # Use fix effect logistic model
# )
# ),
# Stop.type = "Early-Pocock",
# # Use Pocock like early stopping boundary
# Boundary.type = "Symmetric",
# # Use Symmetric boundary where cutoff value for efficacy boundary and futility boundary sum up to 1
# Random.inf = list(
# Fixratio = FALSE,
# # Do not use fix ratio allocation
# Fixratiocontrol = NA,
# # Do not use fix ratio allocation
# BARmethod = "Thall",
# # Use Thall's Bayesian adaptive randomisation approach
# Thall.tuning.inf = list(tuningparameter = "Fixed", fixvalue = 1) # Specified the tunning parameter value for fixed tuning parameter
# ),
# trend.inf = list(
# trend.type = "linear",
# # Linear time trend pattern
# trend.effect = trend.effect,
# # Stength of time trend effect
# trend_add_or_multip = "mult" # Multiplicative time trend effect on response probability
# )
# ),
# cl = 2
# )
#
## -----------------------------------------------------------------------------
# Details of grid
dataloginformd
# Recommend cutoff at each screening round
t(recommandloginformd)
# Plot
plot(
tpIE ~ cutoff,
pch = 16,
xlab = "Cutoff",
ylab = "Type I Error",
cex.lab = 1.3,
col = "#f8766d",
data = data.frame(dataloginformd)
)
cutoffgrid <- seq(0.9, 1, 0.0001)
lines(cutoffgrid, t(predictedtpIEinformd), col = "#00bfc4", lwd = 3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.