Nothing
#' Bayesian inference and model selection for stochastic epidemics
#'
#' \code{Bernadette} provides Bayesian analysis for stochastic extensions of dynamic non-linear systems using advanced computational algorithms.
#'
#' @docType package
#' @name Bernadette-package
#' @aliases Bernadette
#' @useDynLib Bernadette, .registration=TRUE
#' @import ggplot2
#' @importFrom grid unit.c
#' @importFrom gridExtra grid.arrange arrangeGrob
#' @importFrom magrittr `%>%`
#' @import methods
#' @rawNamespace import(Rcpp, except = c(LdFlags,.DollarNames,prompt))
#' @import RcppParallel
#' @import rstantools
#' @importFrom rstan optimizing sampling vb extract
#' @importFrom scales percent pretty_breaks
#' @rawNamespace import(stats, except = c(lag, filter))
#' @import utils
#'
#' @references
#' Bouranis, L., Demiris, N. Kalogeropoulos, K. and Ntzoufras, I. (2022). Bayesian analysis of diffusion-driven multi-type epidemic models with application to COVID-19. arXiv: \url{https://arxiv.org/abs/2211.15229}
#'
#' Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.3. \url{https://mc-stan.org}
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.