| besselI.nuAsym | R Documentation |
Compute Bessel functions I_{\nu}(x) and
K_{\nu}(x) for large \nu and possibly large
x,
using asymptotic expansions in Debye polynomials.
besselI.nuAsym(x, nu, k.max, expon.scaled = FALSE, log = FALSE)
besselK.nuAsym(x, nu, k.max, expon.scaled = FALSE, log = FALSE)
x |
numeric or |
nu |
numeric; The order (maybe fractional!) of the corresponding Bessel function. |
k.max |
integer number of terms in the expansion. Must be in
|
expon.scaled |
logical; if |
log |
logical; if TRUE, |
Abramowitz & Stegun , page 378, has formula 9.7.7 and 9.7.8 for the asymptotic
expansions of I_{\nu}(x) and K_{\nu}(x), respectively,
also saying
When \nu \to +\infty, these expansions
(of I_{\nu}(\nu z) and
K_{\nu}(\nu z))
hold uniformly with respect to z in the sector
|arg z| \le \frac{1}{2} \pi - \epsilon,
where \epsilon iw qn arbitrary positive number.
and for this reason, we require \Re(x) \ge 0.
The Debye polynomials u_k(x) are defined in 9.3.9 and 9.3.10 (page 366).
a numeric vector of the same length as the long of x and
nu. (usual argument recycling is applied implicitly.)
Martin Maechler
Abramowitz, M., and Stegun, I. A. (1964, etc). Handbook of mathematical functions, pp. 366, 378.
From this package Bessel: BesselI(); further,
besselIasym() for the case when x is large and
\nu is small or moderate.
Further, from base: besselI, etc.
x <- c(1:10, 20, 50, 100, 100000)
nu <- c(1, 10, 20, 50, 10^(2:10))
sapply(0:4, function(k.)
sapply(nu, function(n.)
besselI.nuAsym(x, nu=n., k.max = k., log = TRUE)))
sapply(0:4, function(k.)
sapply(nu, function(n.)
besselK.nuAsym(x, nu=n., k.max = k., log = TRUE)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.