Description Usage Arguments Details Value Note Author(s) References See Also Examples
View source: R/BioGeoBEARS_generics_v1.R
Calculate AICc (Akaike Information Criterion). Lower values of AICc indicate some combination of better fit to the data and more parsimony in the model (fewer free parameters).
1 | getAICc(LnL, numparams, samplesize)
|
LnL |
The log-likelihood (typically negative, but may not be for continuous data). |
numparams |
The number of parameters for each model. |
samplesize |
The number of data on which the model conferred likelihood. |
See Burnham et al. (2002) and http://www.brianomeara.info/tutorials/AICc for discussion of AICc and its uses.
AICcval
A vector of AICc results.
Go BEARS!
Nicholas J. Matzke matzke@berkeley.edu
http://phylo.wikidot.com/matzke-2013-international-biogeography-society-poster http://www.brianomeara.info/tutorials/AICc
Burnham_Anderson_2002
Matzke_2012_IBS
calc_AICc_column
,
calc_AICc_column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | LnL = -34.5
numparams = 2
samplesize = 20
getAICc(LnL, numparams, samplesize)
LnL = -20.9
numparams = 3
samplesize = 20
getAICc(LnL, numparams, samplesize)
LnL = -34.5
numparams = 2
samplesize = 5
getAICc(LnL, numparams, samplesize)
LnL = -20.9
numparams = 3
samplesize = 5
getAICc(LnL, numparams, samplesize)
|
Loading required package: rexpokit
Loading required package: cladoRcpp
Loading required package: ape
Loading required package: phylobase
Attaching package: 'phylobase'
The following object is masked from 'package:ape':
edges
[1] 73.70588
[1] 49.3
[1] 79
[1] 71.8
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.