Nothing
#' simulated data for demonstrating the features of Blend
#'
#' Simulated gene expression data for demonstrating the features of Blend.
#'
#' @docType data
#' @keywords datasets
#' @name data
#' @aliases data y x t J kn degree
#' @format The data object consists of 8 components: y, x, t, J, kn and degree.
#'
#' @details
#'
#' \strong{The data and model setting}
#'
#' @details
#' Consider a longitudinal study on \eqn{n} subjects with \eqn{J_i} repeated measurements for each subject. Let \eqn{Y_{ij}} be the measurement for the \eqn{i}-th subject at each time point \eqn{t_{ij}}, \eqn{(1 \leq i \leq n, 1 \leq j \leq J_i)}. We use an \eqn{m}-dimensional vector \eqn{X_{ij}} to denote the genetic factors, where \eqn{X_{ij} = (X_{ij1},...,X_{ijm})^\top}. \eqn{Z_{ij}} is a \eqn{2 \times 1} covariate associated with random effects and \eqn{\zeta_{i}} is a \eqn{2 \times 1} vector of random effects corresponding to the random intercept and slope model. We have the following semi-parametric quantile mixed-effects model:
#'
#' \eqn{Y_{ij} = \alpha_0(t_{ij}) + \sum_{k=1}^{m} \beta_{k}(t_{ij}) X_{ijk} + Z_{ij}^\top \zeta_{i} + \epsilon_{ij}, \zeta_{i} \sim N(0, \Lambda)}
#'
#' where the fixed effects include: (a) the varying intercept \eqn{\alpha_0(t_{ij})}, and (b) the varying coefficients \eqn{\beta(t_{ij})}.
#'
#' The varying intercept and the varying coefficients for the genetic factors can be further expressed as \eqn{\alpha_0(t_{ij})} and \eqn{\beta(t_{ij}) = (\beta_{1}(t_{ij}), ..., \beta_{m}(t_{ij}))^\top}.
#'
#' For the random intercept and slope model, \eqn{Z_{ij}^\top = (1, j)} and \eqn{\zeta_{i} = (\zeta_{i1}, \zeta_{i2})^\top}.
#'
#' Furthermore, \eqn{Z_{ij}^\top \zeta_{i}} can be expressed as \eqn{(b_i^\top \otimes Z^\top_{ij}) J_2 \delta},
#' where \eqn{\zeta_{i} = \Delta b_i}, \eqn{\Lambda = \Delta \Delta^\top}, and
#'
#' \eqn{b_i^\top \otimes Z^\top_{ij} = (b_{i1} Z_{ij1}, b_{i1} Z_{ij2}, b_{i2}Z_{ij1}, b_{i2} Z_{ij2})^\top}.
#'
#' In the simulated data,
#'
#' \deqn{Y = \alpha_{0}(t)+\beta_{1}(t)X_{1} + \beta_{2}(t)X_{2} + \beta_{3}(t)X_{3}+ \beta_{4}(t)X_{4}+0.8X_{5} -1.2 X_{6} + 0.7X_{7}-1.1 X_{8}+\epsilon}
#'
#' where \eqn{\epsilon\sim N(0,1)}, \eqn{\alpha_{0}(t)=2+\sin(2\pi t)}, \eqn{\beta_{1}(t)=2.5\exp(2.5t-1) },\eqn{\beta_{2}(t)=3t^2-2t+2},\eqn{\beta_{3}(t)=-4t^3+3} and \eqn{\beta_{4}(t)=3-2t}
#'
#' @examples
#' data(dat)
#' length(y)
#' dim(x)
#' length(t)
#' length(J)
#' print(t)
#' print(J)
#' print(kn)
#' print(degree)
#' @seealso \code{\link{Blend}}
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.