summary.BsProb | R Documentation |
Reduced printing method for class BsProb
lists. Prints
posterior probabilities of factors and models from Bayesian screening
procedure.
## S3 method for class 'BsProb'
summary(object, nMod = 10, digits = 3, ...)
object |
list. |
nMod |
integer. Number of the top ranked models to print. |
digits |
integer. Significant digits to use. |
... |
additional arguments passed to |
The function prints out the marginal factors and models posterior probabilities. Returns invisible list with the components:
calc |
Numeric vector with basic calculation information. |
probabilities |
Data frame with the marginal posterior factor probabilities. |
models |
Data frame with the models posterior probabilities. |
Ernesto Barrios.
Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". Technometrics. Vol. 28. No. 1. pp. 11–18.
Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". Journal of Quality Technology. Vol. 25. No. 2. pp. 94–105.
BsProb
, print.BsProb
, plot.BsProb
.
library(BsMD)
data(BM86.data,package="BsMD")
X <- as.matrix(BM86.data[,1:15])
y <- BM86.data["y1"]
# Using prior probability of p = 0.20, and k = 10 (gamma = 2.49)
drillAdvance.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
p = 0.20, g = 2.49, ng = 1, nMod = 10)
plot(drillAdvance.BsProb)
summary(drillAdvance.BsProb)
# Using prior probability of p = 0.20, and a 5 <= k <= 15 (1.22 <= gamma <= 3.74)
drillAdvance.BsProbG <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
p = 0.25, g = c(1.22, 3.74), ng = 3, nMod = 10)
plot(drillAdvance.BsProbG)
summary(drillAdvance.BsProbG)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.