| CAESAR.coembedding | R Documentation |
This function performs co-embedding of both cells and genes using the CAESAR method. It integrates spatial transcriptomics data from a Seurat object ('seu') with a spatial adjacency matrix to compute the low-dimensional co-embedding. When spatial location information is not provided, we use a non-centered linear factor model to construct the co-embedding.
CAESAR.coembedding(
seu,
pos = NULL,
reduction.name = "caesar",
q = 50,
radius.upper = 400,
...
)
seu |
A Seurat object containing spatial transcriptomics data. |
pos |
A matrix of spatial coordinates for the spots (e.g., spatial positions of cells or pixels in the image). The row names of 'pos' should match the column names of 'seu'. When pos is NULL, we use a non-centered linear factor model to construct the co-embedding. |
reduction.name |
A character string specifying the name of the dimensional reduction method to store in the Seurat object. Default is "caesar". |
q |
An integer specifying the number of dimensions for the reduced co-embeddings. Default is 50. |
radius.upper |
A numeric value specifying the upper limit of the search radius for the spatial adjacency matrix. Default is 400. |
... |
Additional arguments passed to 'cellembedding_image_seurat'. |
The modified Seurat object with the computed cell and gene embeddings stored in the specified reduction slot.
cellembedding_seurat for computing cell embeddings.
add.gene.embedding for adding gene embeddings to a Seurat object.
data(toydata)
seu <- toydata$seu
pos <- toydata$pos
seu <- CAESAR.coembedding(
seu = seu,
pos = pos
)
print(seu)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.