Implements a class of spatiotemporal generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaussian, or Poisson, but for some models only the binomial and Poisson data likelihoods are available. The spatiotemporal autocorrelation is modelled by random effects, which are assigned conditional autoregressive (CAR) style prior distributions. A number of different random effects structures are available, including Bernardinelli et al. (1995) <doi:10.1002/sim.4780142112>, Rushworth et al. (2014) <doi:10.1016/j.sste.2014.05.001> and Lee et al. (2016) <doi:10.1214/16AOAS941>. Full details are given in the vignette accompanying this package. The creation of this package was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant EP/J017442/1 and the Medical Research Council (MRC) grant MR/L022184/1.
Package details 


Author  Duncan Lee, Alastair Rushworth and Gary Napier 
Maintainer  Duncan Lee <[email protected]> 
License  GPL (>= 2) 
Version  3.0.2 
URL  http://github.com/duncanplee/CARBayesST 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.