cc.mle: Maximum likelihood estimation of the CC distribution

View source: R/cc.mle.R

cc.mleR Documentation

Maximum likelihood estimation of the CC distribution

Description

Maximum likelihood estimation of the CC distribution.

Usage

cc.mle(y)
cc.mle0(y, tol = 1e-7)

Arguments

y

A vector with integer values.

tol

The tolerance value to terminate the maximization algorithm.

Details

The function cc.mle0() uses the optimize function to perform MLE when the location parameter is zero, just as proposed by Papadatos (2022). The function cc.mle() uses the optim function when the location is not assumed zero.

Value

A list including:

param

For the cc.mle() a vector of the \lambda and \mu parameters.

lambda

For the cc.mle0() the \lambda parameter.

loglik

The value of the maximized log-likelihood.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Papadatos N. (2022). The characteristic function of the discrete Cauchy distribution In Memory of T. Cacoullos. Journal of Statistical Theory and Practice, 16(3): 47.

See Also

loc0.test, dcc, cc.reg

Examples

y <- round( rcauchy(100, 3, 10) )
cc.mle(y)

y <- round( rcauchy(100, 0, 10) )
cc.mle0(y)

CCd documentation built on April 4, 2025, 2:21 a.m.