Nothing
# copy_to with overwrite=T does not work on Oracle. Global temp tables need to be truncated before being dropped.
# test_that("Oracle dplyr works", {
# skip_if_not("OracleODBC-19" %in% odbc::odbcListDataSources()$name)
# skip_on_ci() # need development version of dbplyr
#
# con <- DBI::dbConnect(odbc::odbc(), "OracleODBC-19")
#
# cdm <- CDMConnector::cdm_from_con(
# con = con,
# cdm_schema = "CDMV5"
# )
#
# df <- cdm$observation_period %>%
# dplyr::mutate(new_date = !!asDate(observation_period_start_date)) %>% #as.Date translation is incorrect
# head() %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# df <- cdm$person %>%
# # dplyr::left_join(cdm$observation_period, by = "person_id") %>% # this fails
# dplyr::left_join(cdm$observation_period, by = "person_id", x_as = "x", y_as = "y") %>%
# head() %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
#
# df <- cdm$person %>%
# dplyr::slice_sample(n = 100) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# cdm$person %>%
# dplyr::select(year_of_birth, month_of_birth, day_of_birth) %>%
# dplyr::mutate(dob = as.Date(paste0(
# .data$year_of_birth, "/",
# .data$month_of_birth, "/",
# .data$day_of_birth
# ))) %>%
# dbplyr::sql_render()
#
# DBI::dbDisconnect(con)
# })
#
#
# # Test dbplyr quantile translation -----
#
#
# test_that("quantile translation works on postgres", {
# skip_if(Sys.getenv("CDM5_POSTGRESQL_USER") == "")
# skip("manual test")
#
# con <- DBI::dbConnect(RPostgres::Postgres(),
# dbname = Sys.getenv("CDM5_POSTGRESQL_DBNAME"),
# host = Sys.getenv("CDM5_POSTGRESQL_HOST"),
# user = Sys.getenv("CDM5_POSTGRESQL_USER"),
# password = Sys.getenv("CDM5_POSTGRESQL_PASSWORD"))
#
#
#
# cdm <- cdm_from_con(con, cdm_schema = Sys.getenv("CDM5_POSTGRESQL_CDM_SCHEMA"))
#
# # fails
# # df <- cdm$drug_exposure %>%
# # dplyr::select(drug_concept_id, days_supply) %>%
# # dplyr::group_by(drug_concept_id) %>%
# # dplyr::mutate(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# # dplyr::distinct(drug_concept_id, q05_days_supply) %>%
# # dplyr::collect()
# #
# # expect_s3_class(df, "data.frame")
#
# df <- cdm$drug_exposure %>%
# dplyr::select(drug_concept_id, days_supply) %>%
# dplyr::group_by(drug_concept_id) %>%
# dplyr::summarise(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# DBI::dbDisconnect(con)
# })
#
# test_that("quantile translation works on sql server", {
# skip_if(Sys.getenv("CDM5_SQL_SERVER_USER") == "")
# skip("manual test")
#
# con <- DBI::dbConnect(odbc::odbc(),
# Driver = Sys.getenv("SQL_SERVER_DRIVER"),
# Server = Sys.getenv("CDM5_SQL_SERVER_SERVER"),
# Database = Sys.getenv("CDM5_SQL_SERVER_CDM_DATABASE"),
# UID = Sys.getenv("CDM5_SQL_SERVER_USER"),
# PWD = Sys.getenv("CDM5_SQL_SERVER_PASSWORD"),
# TrustServerCertificate = "yes",
# Port = 1433)
#
# cdm <- cdm_from_con(con, cdm_schema = c("CDMV5", "dbo"))
#
# df <- cdm$drug_exposure %>%
# dplyr::select(drug_concept_id, days_supply) %>%
# dplyr::group_by(drug_concept_id) %>%
# dplyr::mutate(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# dplyr::distinct(drug_concept_id, q05_days_supply) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# # fails
# # df <- cdm$drug_exposure %>%
# # dplyr::select(drug_concept_id, days_supply) %>%
# # dplyr::group_by(drug_concept_id) %>%
# # dplyr::summarise(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# # dplyr::collect()
#
# # expect_s3_class(df, "data.frame")
#
# DBI::dbDisconnect(con)
# })
#
# test_that("quantile translation works on redshift", {
# skip_if(Sys.getenv("CDM5_REDSHIFT_USER") == "")
# skip("manual test")
#
# con <- DBI::dbConnect(RPostgres::Redshift(),
# dbname = Sys.getenv("CDM5_REDSHIFT_DBNAME"),
# host = Sys.getenv("CDM5_REDSHIFT_HOST"),
# port = Sys.getenv("CDM5_REDSHIFT_PORT"),
# user = Sys.getenv("CDM5_REDSHIFT_USER"),
# password = Sys.getenv("CDM5_REDSHIFT_PASSWORD"))
#
# cdm <- cdm_from_con(con, cdm_schema = Sys.getenv("CDM5_REDSHIFT_CDM_SCHEMA"))
#
# # df <- cdm$drug_exposure %>%
# # dplyr::select(drug_concept_id, days_supply) %>%
# # dplyr::group_by(drug_concept_id) %>%
# # dplyr::mutate(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# # dplyr::distinct(drug_concept_id, q05_days_supply) %>%
# # dplyr::collect()
# #
# # expect_s3_class(df, "data.frame")
#
# df <- cdm$drug_exposure %>%
# dplyr::select(drug_concept_id, days_supply) %>%
# dplyr::group_by(drug_concept_id) %>%
# dplyr::summarise(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# DBI::dbDisconnect(con)
# })
#
# test_that("quantile translation works on Oracle", {
# skip_on_ci()
# skip_on_cran()
# skip_if_not("OracleODBC-19" %in% odbc::odbcListDataSources()$name)
# skip("manual test")
#
# cdm_schema <- Sys.getenv("CDM5_ORACLE_CDM_SCHEMA")
# con <- DBI::dbConnect(odbc::odbc(), "OracleODBC-19")
#
# cdm <- cdm_from_con(con, cdm_schema = cdm_schema)
#
# df <- cdm$drug_exposure %>%
# dplyr::select(drug_concept_id, days_supply) %>%
# dplyr::group_by(drug_concept_id) %>%
# dplyr::mutate(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# dplyr::distinct(drug_concept_id, q05_days_supply) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# df <- cdm$drug_exposure %>%
# dplyr::select(drug_concept_id, days_supply) %>%
# dplyr::group_by(drug_concept_id) %>%
# dplyr::summarise(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# DBI::dbDisconnect(con)
# })
#
# test_that("quantile translation works on Spark", {
# skip_if_not("Databricks" %in% odbc::odbcListDataSources()$name)
# skip("manual test")
#
# con <- DBI::dbConnect(odbc::odbc(), dsn = "Databricks", bigint = "numeric")
#
# cdm <- cdm_from_con(con, cdm_schema = "omop531")
#
# # df <- cdm$drug_exposure %>%
# # dplyr::select(drug_concept_id, days_supply) %>%
# # dplyr::group_by(drug_concept_id) %>%
# # dplyr::mutate(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# # dplyr::distinct(drug_concept_id, q05_days_supply) %>%
# # dplyr::collect()
# #
# # expect_s3_class(df, "data.frame")
#
# df <- cdm$drug_exposure %>%
# dplyr::select(drug_concept_id, days_supply) %>%
# dplyr::group_by(drug_concept_id) %>%
# dplyr::summarise(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# DBI::dbDisconnect(con)
# })
#
# test_that("quantile translation works on duckdb", {
# skip_if_not(rlang::is_installed("duckdb"))
# skip_if_not(eunomiaIsAvailable())
# skip("manual test")
#
# con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomiaDir())
#
# cdm <- cdm_from_con(con, cdm_schema = "main")
#
# # df <- cdm$drug_exposure %>%
# # dplyr::select(drug_concept_id, days_supply) %>%
# # dplyr::group_by(drug_concept_id) %>%
# # dplyr::mutate(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# # dplyr::distinct(drug_concept_id, q05_days_supply) %>%
# # dplyr::collect()
#
# # expect_s3_class(df, "data.frame")
#
# df <- cdm$drug_exposure %>%
# dplyr::select(drug_concept_id, days_supply) %>%
# dplyr::group_by(drug_concept_id) %>%
# dplyr::summarise(q05_days_supply = quantile(.data$days_supply, 0.05, na.rm = T)) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# DBI::dbDisconnect(con, shutdown = TRUE)
# })
#
#
# test_that("Oracle inSchema works", {
# skip_if_not("OracleODBC-19" %in% odbc::odbcListDrivers())
#
# con <- DBI::dbConnect(odbc::odbc(), "OracleODBC-19")
# cdm_schema <- Sys.getenv("CDM5_ORACLE_CDM_SCHEMA")
#
# person <- dplyr::tbl(con, inSchema(cdm_schema, "PERSON", dbms(con))) %>%
# dplyr::rename_all(tolower)
#
# observation_period <- dplyr::tbl(con, inSchema(cdm_schema, "OBSERVATION_PERIOD", dbms(con))) %>%
# dplyr::rename_all(tolower)
#
# df <- dplyr::inner_join(person, observation_period, by = "person_id") %>%
# head(2) %>%
# dplyr::collect()
#
# expect_s3_class(df, "data.frame")
#
# DBI::dbDisconnect(con)
# })
#
#
# TODO not operator on a column does not work on sqlserver
# dplyr::tbl(attr(cdm, "dbcon"), inSchema(attr(cdm, "write_schema"),
# tempName,
# dbms = dbms(con))) %>%
# dplyr::filter(!.data$is_excluded)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.