acmtfr_fg | R Documentation |
Calculate function value of ACMTF
acmtfr_fg(
x,
Z,
Y,
alpha = 1,
beta = rep(0.001, length(Z$object)),
epsilon = 1e-08,
pi = 0.5,
mu = 1e-06
)
x |
Vectorized parameters of the CMTF model. |
Z |
Z object as generated by |
Y |
Dependent variable (regression part). |
alpha |
Alpha value of the loss function as specified by Acar et al., 2014 |
beta |
Beta value of the loss function as specified by Acar et al., 2014 |
epsilon |
Epsilon value of the loss function as specified by Acar et al., 2014 |
pi |
Pi value of the loss function as specified by Van der Ploeg et al., 2025. |
mu |
Ridge term parameter for calculation of the regression coefficients rho (default = 1e-6). |
Scalar of the loss function value (when manual=FALSE), otherwise a list containing all loss terms.
A = array(rnorm(108*2), c(108, 2))
B = array(rnorm(100*2), c(100, 2))
C = array(rnorm(10*2), c(10, 2))
D = array(rnorm(100*2), c(100,2))
E = array(rnorm(10*2), c(10,2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
Y = A[,1]
init = initializeACMTF(Z, 2, output="vect")
outcome = acmtfr_fg(init, Z, Y)
f = outcome$fn
g = outcome$gr
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.