glm.cmp | R Documentation |
Fit COM-Poisson regression using maximum likelihood estimation. Zero-Inflated COM-Poisson can be fit by specifying a regression for the overdispersion parameter.
glm.cmp(
formula.lambda,
formula.nu = ~1,
formula.p = NULL,
data = NULL,
init = NULL,
fixed = NULL,
control = NULL,
...
)
formula.lambda |
regression formula linked to |
formula.nu |
regression formula linked to |
formula.p |
regression formula linked to |
data |
An optional data.frame with variables to be used with regression formulas. Variables not found here are read from the envionment. |
init |
A data structure that specifies initial values. See the helper function get.init. |
fixed |
A data structure that specifies which coefficients should remain fixed in the maximum likelihood procedure. See the helper function get.fixed. |
control |
A control data structure. See the helper function
get.control. If |
... |
other arguments, such as |
The COM-Poisson regression model is
y_i \sim \rm{CMP}(\lambda_i, \nu_i), \;\;\;
\log \lambda_i = \bm{x}_i^\top \beta, \;\;\;
\log \nu_i = \bm{s}_i^\top \gamma.
The Zero-Inflated COM-Poisson regression model assumes that y_i
is 0
with probability p_i
or y_i^*
with probability 1 - p_i
,
where
y_i^* \sim \rm{CMP}(\lambda_i, \nu_i), \;\;\;
\log \lambda_i = \bm{x}_i^\top \beta, \;\;\;
\log \nu_i = \bm{s}_i^\top \gamma, \;\;\;
\rm{logit} \, p_i = \bm{w}_i^\top \zeta.
glm.cmp
produces an object of either class cmpfit
or
zicmpfit
, depending on whether zero-inflation is used in the model.
From this object, coefficients and other information can be extracted.
Kimberly Sellers, Thomas Lotze, Andrew Raim
Kimberly F. Sellers & Galit Shmueli (2010). A Flexible Regression Model for Count Data. Annals of Applied Statistics, 4(2), 943-961.
Kimberly F. Sellers and Andrew M. Raim (2016). A Flexible Zero-Inflated Model to Address Data Dispersion. Computational Statistics and Data Analysis, 99, 68-80.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.