knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
Installing from CRAN.
install.packages("CRE")
Installing the latest developing version.
library(devtools) install_github("NSAPH-Software/CRE", ref = "develop")
Import.
library("CRE")
Data (required)
y
The observed response/outcome vector (binary or continuous).
z
The treatment/exposure/policy vector (binary).
X
The covariate matrix (binary or continuous).
Parameters (not required)
method_parameters
The list of parameters to define the models used, including:
- ratio_dis
The ratio of data delegated to the discovery sub-sample (default: 0.5).
- ite_method
The method to estimate the individual treatment effect (default: "aipw") [1].
- learner_ps
The (SuperLearner) model for the propensity score estimation (default: "SL.xgboost", used only for "aipw","bart","cf" ITE estimators).
- learner_y
The (SuperLearner) model for the outcome estimation (default: "SL.xgboost", used only for "aipw","slearner","tlearner" and "xlearner" ITE estimators).
hyper_params
The list of hyper parameters to fine tune the method, including:
- intervention_vars
Intervention-able variables used for Rules Generation (default: NULL
).
- ntrees
The number of decision trees for random forest (default: 20).
- node_size
Minimum size of the trees' terminal nodes (default: 20).
- max_rules
Maximum number of candidate decision rules (default: 50).
- max_depth
Maximum rules length (default: 3).
- t_decay
The decay threshold for rules pruning (default: 0.025).
- t_ext
The threshold to define too generic or too specific (extreme) rules (default: 0.01).
- t_corr
The threshold to define correlated rules (default: 1).
- stability_selection
Method for stability selection for selecting the rules. vanilla
for stability selection, error_control
for stability selection with error control and no
for no stability selection (default: vanilla
).
- B
Number of bootstrap samples for stability selection in rules selection and uncertainty quantification in estimation (default: 20).
- subsample
Bootstrap ratio subsample for stability selection in rules selection and uncertainty quantification in estimation (default: 0.5).
- offset
Name of the covariate to use as offset (i.e. "x1") for T-Poisson ITE Estimation. NULL
if not used (default: NULL
).
- cutoff
Threshold defining the minimum cutoff value for the stability scores in Stability Selection (default: 0.9).
- pfer
Upper bound for the per-family error rate (tolerated amount of falsely selected rules) in Error Control Stability Selection (default: 1).
Additional Estimates (not required)
ite
The estimated ITE vector. If given, both the ITE estimation steps in Discovery and Inference are skipped (default: NULL
).
[1] Options for the ITE estimation are as follows:
- S-Learner (slearner
).
- T-Learner (tlearner
)
- T-Poisson(tpoisson
)
- X-Learner (xlearner
)
- Augmented Inverse Probability Weighting (aipw
)
- Causal Forests (cf
)
- Causal Bayesian Additive Regression Trees (bart
)
If other estimates of the ITE are provided in ite
additional argument, both the ITE estimations in discovery and inference are skipped and those values estimates are used instead. The ITE estimator requires also an outcome learner and/or a propensity score learner from the SuperLearner package (i.e., "SL.lm", "SL.svm"). Both these models are simple classifiers/regressors. By default XGBoost algorithm is used for both these steps.
One can create a customized wrapper for SuperLearner internal packages. The following is an example of providing the number of cores (e.g., 12) for the xgboost package in a shared memory system.
m_xgboost <- function(nthread = 12, ...) { SuperLearner::SL.xgboost(nthread = nthread, ...) }
Then use "m_xgboost", instead of "SL.xgboost".
Example 1 (default parameters)
set.seed(9687) dataset <- generate_cre_dataset(n = 1000, rho = 0, n_rules = 2, p = 10, effect_size = 2, binary_covariates = TRUE, binary_outcome = FALSE, confounding = "no") y <- dataset[["y"]] z <- dataset[["z"]] X <- dataset[["X"]] cre_results <- cre(y, z, X) summary(cre_results) plot(cre_results) ite_pred <- predict(cre_results, X)
Example 2 (personalized ite estimation)
set.seed(9687) dataset <- generate_cre_dataset(n = 1000, rho = 0, n_rules = 2, p = 10, effect_size = 2, binary_covariates = TRUE, binary_outcome = FALSE, confounding = "no") y <- dataset[["y"]] z <- dataset[["z"]] X <- dataset[["X"]] ite_pred <- ... # personalized ite estimation cre_results <- cre(y, z, X, ite = ite_pred) summary(cre_results) plot(cre_results) ite_pred <- predict(cre_results, X)
Example 3 (setting parameters)
set.seed(9687) dataset <- generate_cre_dataset(n = 1000, rho = 0, n_rules = 2, p = 10, effect_size = 2, binary_covariates = TRUE, binary_outcome = FALSE, confounding = "no") y <- dataset[["y"]] z <- dataset[["z"]] X <- dataset[["X"]] method_params <- list(ratio_dis = 0.5, ite_method ="aipw", learner_ps = "SL.xgboost", learner_y = "SL.xgboost") hyper_params <- list(intervention_vars = c("x1","x2","x3","x4"), offset = NULL, ntrees = 20, node_size = 20, max_rules = 50, max_depth = 3, t_decay = 0.025, t_ext = 0.025, t_corr = 1, stability_selection = "vanilla", cutoff = 0.8, pfer = 1, B = 10, subsample = 0.5) cre_results <- cre(y, z, X, method_params, hyper_params) summary(cre_results) plot(cre_results) ite_pred <- predict(cre_results, X)
More synthetic data sets can be generated using generate_cre_dataset()
.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.