CausalMetaR: Causally Interpretable Meta-Analysis

Provides robust and efficient methods for estimating causal effects in a target population using a multi-source dataset, including those of Dahabreh et al. (2019) <doi:10.1111/biom.13716>, Robertson et al. (2021) <doi:10.48550/arXiv.2104.05905>, and Wang et al. (2024) <doi:10.48550/arXiv.2402.02684>. The multi-source data can be a collection of trials, observational studies, or a combination of both, which have the same data structure (outcome, treatment, and covariates). The target population can be based on an internal dataset or an external dataset where only covariate information is available. The causal estimands available are average treatment effects and subgroup treatment effects. See Wang et al. (2025) <doi:10.1017/rsm.2025.5> for a detailed guide on using the package.

Getting started

Package details

AuthorYi Lian [aut], Guanbo Wang [aut], Sean McGrath [aut, cre] (<https://orcid.org/0000-0002-7281-3516>), Issa Dahabreh [aut]
MaintainerSean McGrath <sean.mcgrath514@gmail.com>
LicenseGPL (>= 3)
Version0.1.3
URL https://github.com/ly129/CausalMetaR https://doi.org/10.1017/rsm.2025.5
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("CausalMetaR")

Try the CausalMetaR package in your browser

Any scripts or data that you put into this service are public.

CausalMetaR documentation built on April 12, 2025, 2:06 a.m.