The CausalMetaR
package provides robust and efficient methods for
estimating causal effects in a target population using a multi-source
dataset. The multi-source data can be a collection of trials,
observational studies, or a combination of both, which have the same
data structure (outcome, treatment, and covariates). The target
population can be based on an internal dataset or an external dataset
where only covariate information is available. The causal estimands
available are average treatment effects (ATEs) and subgroup treatment
effects (STEs).
You can install the released version of CausalMetaR
from
CRAN with:
install.packages("CausalMetaR")
You can install the development version of CausalMetaR
from
GitHub with:
# install.packages("devtools")
devtools::install_github("ly129/CausalMetaR")
Refer to Wang et al. (2025) for a
detailed guide on using the package. Below, we include the code used in
the examples in the paper. The examples are based on the multi-source
dataset dat_multisource
included in the package.
Loading the package:
library(CausalMetaR)
Specifying the working models:
outcome_model_args <- list(family = gaussian(),
SL.library = c("SL.glmnet", "SL.nnet", "SL.glm"))
treatment_model_args <- list(family = binomial(),
SL.library = c("SL.glmnet", "SL.nnet", "SL.glm"))
external_model_args = list(family = binomial(),
SL.library = c("SL.glmnet", "SL.nnet", "SL.glm"))
Setting a random number seed for reproducibility:
set.seed(1234)
The examples below estimate ATEs and STEs in external and internal target populations. Each example may take a few minutes to run on standard laptop.
result_ae <- ATE_external(
Y = dat_multisource$Y,
S = dat_multisource$S,
A = dat_multisource$A,
X = dat_multisource[, 1:10],
X_external = dat_external[, 1:10],
outcome_model_args = outcome_model_args,
treatment_model_args = treatment_model_args,
external_model_args = external_model_args,
cross_fitting = TRUE,
replications = 5)
#> Loading required package: nnls
#> Loading required namespace: nnet
result_ae
#> AVERAGE TREATMENT EFFECT ESTIMATES IN AN EXTERNAL POPULATION
#>
#> Treatment effect (mean difference) estimates:
#> ---------------------------------------------
#> Estimate SE Lower 95% CI Upper 95% CI
#> 6.6294 0.1535 5.8616 7.3972
result_ai <- ATE_internal(
Y = dat_multisource$Y,
S = dat_multisource$S,
A = dat_multisource$A,
X = dat_multisource[, 1:10],
outcome_model_args = outcome_model_args,
treatment_model_args = treatment_model_args,
cross_fitting = TRUE,
replications = 5)
result_ai
#> AVERAGE TREATMENT EFFECT ESTIMATES IN INTERNAL POPULATIONS
#>
#> Treatment effect (mean difference) estimates:
#> ---------------------------------------------
#> Source Estimate SE Lower 95% CI Upper 95% CI
#> A 6.5874 0.1903 6.2145 6.9603
#> B 7.7556 0.2577 7.2506 8.2606
#> C 7.2916 0.3594 6.5872 7.9960
result_se <- STE_external(
Y = dat_multisource$Y,
S = dat_multisource$S,
A = dat_multisource$A,
X = dat_multisource[, 2:10],
EM = dat_multisource$EM,
X_external = dat_external[, 2:10],
EM_external = dat_external$EM,
outcome_model_args = outcome_model_args,
treatment_model_args = treatment_model_args,
external_model_args = external_model_args,
cross_fitting = TRUE,
replications = 5)
result_se
#> SUBGROUP TREATMENT EFFECT ESTIMATES IN AN EXTERNAL POPULATION
#>
#> Treatment effect (mean difference) estimates:
#> ---------------------------------------------
#> Subgroup Estimate SE Lower 95% CI Upper 95% CI Lower 95% SCB Upper 95% SCB
#> a 7.0787 0.3563 5.9088 8.2485 5.5453 8.6121
#> b 5.5207 0.2321 4.5764 6.4650 4.2830 6.7585
#> c 7.5709 0.1805 6.7382 8.4037 6.4794 8.6625
#> d 6.5748 0.2253 5.6446 7.5051 5.3556 7.7941
#> e 5.3741 0.3382 4.2343 6.5139 3.8802 6.8681
result_si <- STE_internal(
Y = dat_multisource$Y,
S = dat_multisource$S,
A = dat_multisource$A,
X = dat_multisource[, 2:10],
EM = dat_multisource$EM,
outcome_model_args = outcome_model_args,
treatment_model_args = treatment_model_args,
cross_fitting = TRUE,
replications = 5)
result_si
#> SUBGROUP TREATMENT EFFECT ESTIMATES IN INTERNAL POPULATIONS
#>
#> Treatment effect (mean difference) estimates:
#> ---------------------------------------------
#> Source Subgroup Estimate SE Lower 95% CI Upper 95% CI Lower 95% SCB
#> A a 6.9197 0.5001 5.9395 7.8999 5.6345
#> b 5.4340 0.3681 4.7126 6.1555 4.4880
#> c 7.5452 0.3097 6.9383 8.1522 6.7493
#> d 6.5053 0.3630 5.7939 7.2168 5.5724
#> e 5.4595 0.5215 4.4373 6.4816 4.1192
#> B a 8.2134 0.7554 6.7328 9.6939 6.2720
#> b 6.8396 0.5381 5.7850 7.8942 5.4567
#> c 8.7995 0.4232 7.9699 9.6290 7.7118
#> d 7.7098 0.4529 6.8223 8.5974 6.5460
#> e 6.4405 0.6975 5.0734 7.8076 4.6479
#> C a 8.0544 1.2049 5.6929 10.4159 4.9579
#> b 6.2151 0.6711 4.8998 7.5304 4.4904
#> c 8.2620 0.6426 7.0026 9.5215 6.6106
#> d 7.1427 0.6538 5.8612 8.4242 5.4624
#> e 6.0910 0.8718 4.3823 7.7997 3.8504
#> Upper 95% SCB
#> 8.2050
#> 6.3801
#> 8.3411
#> 7.4382
#> 6.7998
#> 10.1547
#> 8.2225
#> 9.8872
#> 8.8737
#> 8.2332
#> 11.1509
#> 7.9398
#> 9.9135
#> 8.8231
#> 8.3316
To cite this package, use:
Wang G, McGrath S, Lian Y. CausalMetaR: An R package for performing causally interpretable meta-analyses. Research Synthesis Methods. In press.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.